Редактирование: Лемма Бёрнсайда и Теорема Пойа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 37: Строка 37:
 
<math>= |G|\sum\limits_{P\in C}\sum\limits_{x\in P}</math><math> \dfrac{1}{|P|}</math>
 
<math>= |G|\sum\limits_{P\in C}\sum\limits_{x\in P}</math><math> \dfrac{1}{|P|}</math>
  
Заметим, что <math>\sum\limits_{x\in P} \dfrac{1}{|P|} = \dfrac{1}{|P|}\sum\limits_{1}^{|P|}{1} = 1.</math> Следовательно:
+
Заметим, что <math>\sum\limits_{x\in P} \dfrac{1}{|P|} \dfrac{1}{|P|}\sum\limits_{1}^{|P|}{1} = 1.</math> Следовательно:
  
 
<math>|G|\sum\limits_{P\in C}\sum\limits_{x\in P} \dfrac{1}{|P|} = |G|\sum\limits_{P\in C} 1</math>.
 
<math>|G|\sum\limits_{P\in C}\sum\limits_{x\in P} \dfrac{1}{|P|} = |G|\sum\limits_{P\in C} 1</math>.
Строка 103: Строка 103:
  
 
Рассмотрим группу вращений куба <tex>G</tex>:
 
Рассмотрим группу вращений куба <tex>G</tex>:
 +
* <tex>1</tex> Тождественное вращение.
 +
* <tex>4</tex> вращения на угол <tex>120^{\circ}</tex> и <tex>4</tex> вращения на угол <tex>240^{\circ}</tex> вдоль главных диагоналей куба, имеющих по <tex>2</tex> орбиты на гранях (<tex>k^2</tex> орбит на раскрасках соответственно).
 +
* <tex>6</tex> вращений на угол <tex>180^{\circ}</tex> вдоль осей, соединяющих середины противоположных ребер, имеющих по <tex>3</tex> орбиты на гранях (<tex>k^3</tex> орбит на раскрасках соответственно).
 +
* <tex>3</tex> вращения на угол <tex>90^{\circ}</tex> и <tex>3</tex> вращения на угол <tex>270^{\circ}</tex> вдоль осей, соединяющих центры противоположных граней, имеющих по <tex>3</tex> орбиты на гранях (<tex>k^3</tex> орбит на раскрасках соответственно).
 +
* <tex>3</tex> вращения на угол <tex>180^{\circ}</tex> вдоль осей, соединяющих центры противоположных граней, имеющих по <tex>4</tex> орбиты на гранях (<tex>k^4</tex> орбит на раскрасках соответственно).
  
''Последующие изображения с развертками будут подразумевать такое же соответствие вершин, как на рисунке ниже. На развертках будем показывать раскраски, а на самом кубе ребро, через которое мы будем вращать его.  Цвета на развертке лишь показывают то, что грани с одинаковым цветом должны быть одинаково раскрашены.''
+
Итого <tex>1+(4+4)+6+(3+3)+3=24</tex> поворота, при которых куб переходит в себя. Других различных поворотов, которые переводят куб в себя не существует, поскольку ''группа вращений'' <tex>G</tex> изоморфна ''симметрической группе'' <tex>S_4</tex> ''(без доказательства)'', тогда из того, что <tex>|S_4|=24</tex> следует, что мы указали все преобразования, которые переводят куб в себя, причем различным образом.
[[Файл:burnside-intro.png|top]]
 
* <tex>1</tex> Тождественное вращение. Поскольку ничего не происходит, мы можем покрасить каждую грань в любой цвет <tex>\Rightarrow k^6 </tex>  раскрасок.
 
[[Файл:burnside-1.png|top]]
 
* <tex>4</tex> вращения на угол <tex>120^{\circ}</tex> и <tex>4</tex> вращения на угол <tex>240^{\circ}</tex> вдоль главных диагоналей куба (вращений четыре, поскольку главных диагоналей <tex>4</tex> шт.). При вращении, если одна грань переходит в другую, мы должны покрасить их в один цвет. Такие раскраски будут являться стабилизатором данного вращения. Из рисунка видно, что мы можем покрасить наш куб в <tex>k^2</tex> цветов (в <tex>k</tex> цветов одни три грани и в <tex>k</tex> цветов другие три грани).
 
[[Файл:burnside-2.png|top]]
 
* <tex>6</tex> вращений на угол <tex>180^{\circ}</tex> вдоль осей, соединяющих середины противоположных ребер <tex>\Rightarrow k^3 </tex>  раскрасок.
 
[[Файл:burnside-3.png|top]]
 
* <tex>3</tex> вращения на угол <tex>90^{\circ}</tex> и <tex>3</tex> вращения на угол <tex>270^{\circ}</tex> вдоль осей, соединяющих центры противоположных граней <tex>\Rightarrow k^3 </tex>  раскрасок.
 
[[Файл:burnside-4.png|top]]
 
* <tex>3</tex> вращения на угол <tex>180^{\circ}</tex> вдоль осей, соединяющих центры противоположных граней <tex>\Rightarrow k^4 </tex>  раскрасок.
 
[[Файл:burnside-5.png|top]]
 
  
Итого <tex>1+(4+4)+6+(3+3)+3=24</tex> поворота, при которых куб переходит в себя. Других различных поворотов, которые переводят куб в себя, не существует, поскольку ''группа вращений'' [https://en.wikipedia.org/wiki/Octahedral_symmetry <tex>G</tex> изоморфна ''симметрической группе'' <tex>S_4</tex>], тогда из того, что <tex>|S_4|=24</tex> следует, что мы указали все преобразования, которые переводят куб в себя, причем различным образом.
+
Давайте введем обозначения для наших вращений, в том же порядке, в котором они были указаны: <tex> \{ e , \alpha , \beta , \gamma , \xi \} </tex>, тогда с помощью Леммы Бёрнсайда найдем искомый ответ:
  
Теперь с помощью Леммы Бёрнсайда найдем искомый ответ:
+
:<tex> |C| = \dfrac{1} {|G|} \sum\limits_{g \in G}|St(g)| = \dfrac{1} {|G|} (|St(e)| + |St( \alpha )| + |St( \beta )| + |St( \gamma )| + |St( \xi )|) =</tex>
 
+
:<tex> \dfrac{1} {24} (k^6 + 8k^2 + 6k^3 + 6k^3 + 3k^4) = \dfrac{1} {24} (k^6 + 3k^4 + 12k^3 + 8k^2)</tex>
:<tex> |C| = \dfrac{1} {|G|} \sum\limits_{g \in G}|St(g)| = \dfrac{1} {24} (k^6 + 8k^2 + 6k^3 + 6k^3 + 3k^4) = \dfrac{1} {24} (k^6 + 3k^4 + 12k^3 + 8k^2)</tex>
 
  
 
==См. также==
 
==См. также==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)