Редактирование: Лемма Огдена

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
Для бесконечного языка применение приведённых в предыдущем разделе приёмов приведёт к началу построения в общем случае бесконечного числа правил грамматики. Требуется более мощный аппарат, которым служит доказываемая ниже лемма Огдена.
 
 
== Лемма ==
 
 
{{Лемма
 
{{Лемма
 
|statement=
 
|statement=
Для каждой [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободной грамматики]] <tex>\Gamma =\langle \Sigma, N, S \in N, P \subset N\times (\Sigma\cup N)^{*}\rangle</tex> существует такое <tex>n</tex>, что для любого слова <tex>\omega \in L(\Gamma)</tex> длины не менее <tex>n</tex> и для любых выделенных в <tex>\omega</tex> не менее <tex>n</tex> позиций, <tex>\omega</tex> может быть представлено в виде <tex>\omega=uvxyz</tex>, причем:
+
Для каждой [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободный грамматики]] <tex>\Gamma =\langle \Sigma, N, S \in N, P \subset N\times (\Sigma\cup N)^{*}\rangle</tex> существует такое <tex>n</tex>, что для любого слова <tex>\omega \in L(\Gamma)</tex> длины не менее <tex>n</tex> и для любых выделенных в <tex>\omega</tex> не менее <tex>n</tex> позиций, <tex>\omega</tex> может быть представлено в виде <tex>\omega=uvxyz</tex>, причем:
 
# <tex>x</tex> содержит выделенную позицию;
 
# <tex>x</tex> содержит выделенную позицию;
 
# либо <tex>u</tex> и <tex>v</tex>, либо <tex>y</tex> и <tex>z</tex> обе содержат выделенные позиции;
 
# либо <tex>u</tex> и <tex>v</tex>, либо <tex>y</tex> и <tex>z</tex> обе содержат выделенные позиции;
 
# <tex>vxy</tex> содержат не более <tex>n</tex> выделенных позиций;
 
# <tex>vxy</tex> содержат не более <tex>n</tex> выделенных позиций;
# существует <tex>A \in N</tex>, такой что <tex>S \Rightarrow^{+} uAz \Rightarrow^{+} uvAyz \Rightarrow^{+} uvxyz</tex>. (т.е. <tex>\forall k \geqslant 0~uv^{k}xy^{k}z\in L</tex>)
+
# существует <tex>A \in N</tex>, такой что <tex>S \Rightarrow^{+} uAz \Rightarrow^{+} uvAyz \Rightarrow^{+} uvxyz</tex>.
 
|proof=
 
|proof=
Введем следующие обозначения: <tex>m = |N|</tex> и <tex>l</tex> — длина самой длинной правой части правила из <tex>P</tex>. Тогда в качестве <tex>n</tex> возьмем <tex>l^{2m + 3}</tex>. Рассмотрим дерево разбора <tex>T</tex> для произвольного слова <tex>\omega \in L(\Gamma)</tex>, у которого <tex>|\omega| \geqslant n</tex>. В силу выбора <tex>n</tex> в <tex>T</tex> будет по крайне мере один путь от корня до листа длины не менее <tex>2m + 3</tex>. Произвольным образом выделим в <tex>\omega</tex> не менее <tex>n</tex> позиций. Соответствующие этим позициям листья дерева <tex>T</tex> будем называть выделенными.
+
Введем следующие обозначения: <tex>m = |N|</tex> и <tex>l</tex> — длина самой длинной правой части правила из <tex>P</tex>. Тогда в качестве <tex>n</tex> возьмем <tex>l^{2m + 3}</tex>. Рассмотрим дерево разбора <tex>T</tex> для произвольного слова <tex>\omega \in L(\Gamma)</tex>, у которого <tex>|\omega| \ge n</tex>. В силу выбора <tex>n</tex> в <tex>T</tex> будет по крайне мере один путь от корня до листа длины не менее <tex>2m + 3</tex>. Произвольным образом выделим в <tex>\omega</tex> не менее <tex>n</tex> позиций. Соответствующие этим позициям листья дерева <tex>T</tex> будем называть выделенными.
  
Пусть <tex>v_1</tex> — корень <tex>T</tex>, а <tex>v_{i + 1}</tex> — сын <tex>v_i</tex>, который имеет среди своих потомков наибольшее число выделенных листьев (если таких несколько, то <tex>v_{i + 1}</tex> самый правый из них). Рассмотрим <tex>v_1, v_2, \ldots, v_p</tex> {{---}} путь от корня до листа.  
+
Пусть <tex>v_1</tex> — корень <tex>T</tex>, а <tex>v_{i + 1}</tex> — сын <tex>v_i</tex>, который имеет среди своих потомков наибольшее число выделенных листьев (если таких несколько, то <tex>v_{i + 1}</tex> самый правый из них). Рассмотрим <tex>v_1, v_2, ..., v_p</tex> путь от корня до листа.  
  
Будем называть ветвящейся ту вершину, у которой по крайне мере два сына имеют выделенных потомков. Докажем по индукции, что если среди <tex>v_1, v_2, \ldots, v_i</tex> вершин есть <tex>k</tex> ветвящихся, то <tex>v_{i + 1}</tex> имеет хотя бы <tex>l^{2m + 3 - k}</tex> выделенных потомков. <br>База индукции: <tex>i = 0</tex>. Тогда <tex>k = 0</tex> и <tex>v_1</tex> имеет по крайне мере <tex>n</tex> выделенных потомков, поскольку является корнем. <br>Индукционный переход. Если <tex>v_i</tex> не является ветвящейся вершиной, то <tex>v_{i + 1}</tex> имеет такое же число ветвящихся потомков, как и <tex>v_i</tex>. Если <tex>v_i</tex> — ветвящаяся вершина, то <tex>v_{i + 1}</tex> имеет не более чем в <tex>l</tex> раз меньшее число выделенных потомков.
+
Будем называть ветвящейся ту вершину, у которой по крайне мере два сына имеют выделенных потомков. Докажем по индукции, что если среди <tex>v_1, v_2, ..., v_i</tex> вершин есть <tex>k</tex> ветвящихся, то <tex>v_{i + 1}</tex> имеет хотя бы <tex>l^{2m + 3 - k}</tex> выделенных потомков. <br>База индукции: <tex>i = 0</tex>. Тогда <tex>k = 0</tex> и <tex>v_1</tex> имеет по крайне мере <tex>n</tex> выделенных потомков, поскольку является корнем. <br>Индукционный переход. Если <tex>v_i</tex> не является ветвящейся вершиной, то <tex>v_{i + 1}</tex> имеет такое же число ветвящихся потомков, как и <tex>v_i</tex>. Если <tex>v_i</tex> — ветвящаяся вершина, то <tex>v_{i + 1}</tex> имеет не более чем в <tex>l</tex> раз меньшее число выделенных потомков.
  
Поскольку <tex>v_1</tex> имеет хотя бы <tex>n = l^{2m + 3}</tex> выделенных потомков, то <tex>v_1, v_2, \ldots, v_p</tex> содержит по крайне мере <tex>2m + 3</tex> ветвящиеся вершин. Заметим, что <tex>v_p</tex> {{---}} лист, поэтому <tex>p > 2m + 3</tex>.
+
Поскольку <tex>v_1</tex> имеет хотя бы <tex>n = l^{2m + 3}</tex> выделенных потомков, то <tex>v_1, v_2, ..., v_p</tex> содержит по крайне мере <tex>2m + 3</tex> ветвящиеся вершин. Заметим, что <tex>v_p</tex> лист, поэтому <tex>p > 2m + 3</tex>.
  
[[Файл:derivation_tree_T.png|240px|thumb|left|Дерево вывода <tex>T</tex>]]Будем называть <tex>v_i</tex> левой ветвящейся вершиной, если ее сын, не принадлежащий пути <tex>v_1, v_2, \ldots, v_p</tex>, имеет выделенного потомка, лежащего слева от <tex>v_p</tex>. В противном случае назовем <tex>v_i</tex> правой ветвящейся вершиной. Рассмотрим последние <tex>2m + 3</tex> вершины, принадлежащие пути <tex>v_1, v_2, \ldots, v_p</tex>. Предположим, что хотя бы <tex>m + 2</tex> вершины {{---}} левые ветвящиеся (случай, когда хотя бы <tex>m + 2</tex> вершины {{---}} правые ветвящиеся, разбирается аналогично). Пусть <tex>u_1, u_2, \ldots, u_{m + 2}</tex> {{---}} последние <tex>m + 2</tex> левые ветвящиеся вершины. Поскольку <tex>m = |N|</tex>, то среди них можно найти как минимум две вершины, соответствующие одному нетерминалу. Обозначим эти вершины <tex>a</tex> и <tex>b</tex>, причем <tex>b</tex> {{---}} потомок <tex>a</tex>. Тогда на рисунке показано, как представить <tex>\omega</tex> в требуемом виде.
+
[[Файл:derivation_tree_T.png|240px|thumb|left|Дерево вывода <tex>T</tex>]]Будем называть <tex>v_i</tex> левой ветвящейся вершиной, если ее сын, не принадлежащий пути <tex>v_1, v_2, ..., v_p</tex>, имеет выделенного потомка, лежащего слева от <tex>v_p</tex>. В противном случае назовем <tex>v_i</tex> правой ветвящейся вершиной. Рассмотрим последние <tex>2m + 3</tex> вершины, принадлежащие пути <tex>v_1, v_2, ..., v_p</tex>. Предположим, что хотя бы <tex>m + 2</tex> вершины {{---}} левые ветвящиеся (случай, когда хотя бы <tex>m + 2</tex> вершины {{---}} правые ветвящиеся, разбирается аналогично). Пусть <tex>u_1, u_2, ..., u_{m + 2}</tex> последние <tex>m + 2</tex> левые ветвящиеся вершины. Поскольку <tex>m = |N|</tex>, то среди них можно найти как минимум две вершины, соответствующие одному нетерминалу. Обозначим эти вершины <tex>a</tex> и <tex>b</tex>, причем <tex>b</tex> {{---}} потомок <tex>a</tex>. Тогда на рисунке показано, как представить <tex>\omega</tex> в требуемом виде.
  
  
Условие <tex>(1)</tex> выполнено, поскольку <tex>x</tex> содержит выделенную вершину, а именно <tex>v_p</tex>. Очевидно, что условие <tex>(4)</tex> выполнено в силу предложенного разбиения <tex>\omega</tex>. Кроме того, <tex>u</tex> содержит выделенную вершину, а именно потомка некоторого сына вершины <tex>u_1</tex>. Аналогично, выделенный потомок некоторого сына вершины <tex>a</tex> содержится в <tex>v</tex>. Таким образом, условие <tex>(2)</tex> выполнено. Поскольку между <tex>v_p</tex> и <tex>a</tex> не более <tex>2m + 3</tex> вершин, вершина <tex>a</tex> имеет не более <tex>n</tex> выделенных потомков, поэтому условие <tex>(3)</tex> выполнено.
+
Условие (1) выполнено, поскольку <tex>x</tex> содержит выделенную вершину, а именно <tex>v_p</tex>. Очевидно, что условие (4) выполнено в силу предложенного разбиения <tex>\omega</tex>. Кроме того, <tex>u</tex> содержит выделенную вершину, а именно потомка некоторого сына вершины <tex>u_1</tex>. Аналогично, выделенный потомок некоторого сына вершины <tex>a</tex> содержится в <tex>v</tex>. Таким образом, условие (2) выполнено. Поскольку между <tex>v_p</tex> и <tex>a</tex> не более <tex>2m + 3</tex> вершин, вершина <tex>a</tex> имеет не более <tex>n</tex> выделенных потомков, поэтому условие (3) выполнено.
 
}}
 
}}
 
== Примеры не КС-языка, для которого выполняется лемма ==
 
Следует обратить особое внимание на то,  что лемма содержит лишь необходимые условия принадлежности КС языку.
 
===Пример <tex> 1 </tex>===
 
{{Утверждение
 
|statement=Можно построить такой язык, для которого будет выполняться лемма Огдена, однако язык не будет контекстно-свободным.
 
|proof=
 
При анализе этого языка следует использовать алгебраические свойства множества. Выберем <tex>P</tex> {{---}} подмножество <tex>N</tex> и
 
 
<tex>A_{p} = \{ (ab)^n \mid P \in N \} </tex>
 
 
<tex>B_{p} = A_{p} \cup X^* \{aa, bb\}X^*</tex>
 
 
Языки над <tex>X=\{a, b\}</tex>.
 
 
Очевидно, что <tex>B_{p}</tex> {{---}} КС, если <tex>A_{p}</tex> контекстно-свободен. <tex>B_{p}</tex> является рекурсивно-перечислимым, если и <tex>A_{p}</tex> им является.
 
 
Для <tex>B_{p}</tex> будет выполняться лемма Огдена при <tex>n = 4</tex>. Выбрав <tex>A_{p}</tex> таким образом, чтобы он был рекурсивно-перечислимым, мы создадим язык для которого будет выполняться лемма Огдена, однако язык не будет контекстно-свободным. (Такие языки существуют)<ref>A.V. Aho & J.D. Ullman, The Theory of Parsing, Translation and Compilimg, Vol. I, 1972</ref>
 
}}
 
 
=== Пример <tex> 2 </tex> ===
 
{{Утверждение
 
|statement=Язык <tex>L = {a^mb^nc^l}</tex>,  где <tex> m, n, l </tex> {{---}} попарно различны, не является КС-языком.
 
|proof=
 
 
Предположим, что данный язык контекстно-свободный. Возьмем цепочку <tex>\omega = a^kb^{k+(k-1)!} c^{k+k!}</tex>, где <tex>k</tex> {{---}} константа из леммы Огдена, выделив в ней все вхождения символа <tex>a</tex>. Тогда при представлении цепочки <tex>\omega</tex> в виде <tex>uvxyz</tex> цепочка <tex>x</tex> (по условию (1) леммы)  обязательно «зацепит» хотя бы один
 
символ <tex>a</tex>. Cледовательно, цепочка <tex>v</tex> состоит только из символов <tex>a</tex> (как и цепочка <tex>u</tex>). А именно,
 
<tex>v = \alpha^p</tex>, <tex>1 \leqslant p \leqslant k+1</tex>.
 
 
Тогда, если цепочка <tex>x</tex> содержит и другие символы, кроме <tex>a</tex>, цепочка <tex>y</tex> может входить либо в «зону» символов <tex>b</tex> (целиком), либо в «зону» символов <tex>c</tex> (целиком), так как расположение накачиваемых цепочек на стыках зон, очевидно, невозможно. В первом случае «кратность» <tex>\alpha</tex> накачки цепочки <tex>v</tex>, которая уравняет числа символов <tex>a</tex> и <tex>c</tex>, определяется из соотношения:
 
<tex>k + \alpha \cdot p = k + k!</tex>, то есть <tex>\alpha = \dfrac{k!}{p} </tex>
 
 
Во втором случае <tex>\dfrac {k-1!}{p}</tex> - кратная накачка цепочки <tex>v</tex> уравняет числа вхождений символов <tex>a</tex> и <tex>b</tex>.
 
Не исключено, наконец, что обе накачиваемые цепочки расположены в «зоне» символов <tex>a</tex>. Но тогда одним из указанных выше способов накачки можно уравнять числа либо символов <tex>a</tex> и <tex>b</tex>, либо <tex>a</tex> и <tex>c</tex>.
 
 
[[Файл:Ogden1.png|left|Рис. Цепочки контекстно-свободного языка]]
 
 
Заметим, что возможность выделения символов существенно упрощает анализ данного языка, так как позволяет считать, что цепочка <tex>v</tex> может расположиться единственным способом. Иначе, т.е. при использовании леммы о разрастании для кс-языков, решение задачи было бы, по меньшей мере, сильно затруднено.
 
}}
 
 
== См. также ==
 
*[[Лемма_о_разрастании_для_КС-грамматик|Лемма о разрастании для КС-грамматик]]
 
 
==Примечания==
 
 
<references />
 
 
== Источники информации ==
 
 
* [http://ru.wikipedia.org/wiki/Лемма_Огдена Wikipedia {{---}} Лемма Огдена]
 
* ''Hopcroft, Motwani and Ullman''  {{---}} Automata Theory, Languages, and Computation {{---}} Addison-Wesley, 1979. ISBN 81-7808-347-7.
 
* ''Ogden, W.'' (1968). A helpful result for proving inherent ambiguity. Mathematical Systems Theory. 2 (3): 191–194.
 
* [http://archive.numdam.org/ARCHIVE/ITA/ITA_1978__12_3/ITA_1978__12_3_201_0/ITA_1978__12_3_201_0.pdf On languages satisfying Ogden's lemma]
 
* [http://ccf.ee.ntu.edu.tw/~yen/courses/toc14/chapter-2a.pdf Ogden's lemma]
 
  
 
[[Категория: Теория формальных языков]]
 
[[Категория: Теория формальных языков]]
 
[[Категория: Контекстно-свободные грамматики]]
 
[[Категория: Контекстно-свободные грамматики]]
[[Категория: Опровержение контекстно-свободности языка]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: