Лемма о рукопожатиях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Лемма о рукопожатиях)
(Регулярный граф)
Строка 31: Строка 31:
  
 
==== Регулярный граф ====
 
==== Регулярный граф ====
 +
В графе с <tex> n </tex> вершинами, степени которых равны <tex> k</tex> (регулярный граф), ровно <tex>\frac{kn}{2} </tex> ребер.
 +
 +
''Следствие'' Если степень каждой вершины нечетна и равна <tex> k</tex>, то количество ребер кратно <tex> k </tex>.
  
 
==== Бесконечный граф ====
 
==== Бесконечный граф ====

Версия 13:26, 9 декабря 2012

Лемма о рукопожатиях

Неориентированный граф

Лемма:
Сумма степеней всех вершин графа (или мультиграфа без петель) — четное число, равное удвоенному числу ребер:
[math] \sum\limits_{v\in V(G)} deg\ v=2 |E(G)|[/math]
Доказательство:
[math]\triangleright[/math]
Возьмем пустой граф. Сумма степеней вершин такого графа равна нулю. При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин четна и равна удвоенному числу ребер.
[math]\triangleleft[/math]


Следствие 1 В любом графе число вершин нечетной степени четно

Следствие 2 Число ребер в полном графе [math]\frac{n(n-1)}{2} [/math]

Ориентированный граф

Лемма:
Сумма входящих и исходящих степеней всех вершин ориентированного графа — четное число, равное удвоенному числу ребер:
[math]\sum\limits_{v\in V(G)} deg^{-}\ v \; + \sum\limits_{v\in V(G)} deg^{+}\ v=2 |E(G)| [/math]
Доказательство:
[math]\triangleright[/math]
Аналогично доказательству леммы о рукопожатиях неориентированном графе.
[math]\triangleleft[/math]

Регулярный граф

В графе с [math] n [/math] вершинами, степени которых равны [math] k[/math] (регулярный граф), ровно [math]\frac{kn}{2} [/math] ребер.

Следствие Если степень каждой вершины нечетна и равна [math] k[/math], то количество ребер кратно [math] k [/math].

Бесконечный граф

Источники