Редактирование: Линейная регрессия

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 110: Строка 110:
 
* преобразование признаков, чтобы в новом признаковом пространстве признаков оказалось меньше, но они хорошо восстанавливали бы исходные: <br> <tex> f_1, \dots, f_n \rightarrow g_1 \dots, g_m, m \ll n </tex>.
 
* преобразование признаков, чтобы в новом признаковом пространстве признаков оказалось меньше, но они хорошо восстанавливали бы исходные: <br> <tex> f_1, \dots, f_n \rightarrow g_1 \dots, g_m, m \ll n </tex>.
  
==Примеры кода==
+
== Пример кода для Scikit-learn ==
=== Пример кода для Scikit-learn ===
 
  
 
  '''import''' matplotlib.pyplot '''as''' plt
 
  '''import''' matplotlib.pyplot '''as''' plt
Строка 152: Строка 151:
  
 
[[Файл: Linear_regression_example.png]]
 
[[Файл: Linear_regression_example.png]]
 
===Пример на языке Java===
 
Пример линейной регресии с применением <code>weka.classifiers.functions.LinearRegression</code><ref>[http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/LinearRegression.html/ Weka, Linear Regression]</ref>
 
 
<code>Maven</code> зависимомсть:
 
  <dependency>
 
    <groupId>nz.ac.waikato.cms.weka</groupId>
 
    <artifactId>weka-stable</artifactId>
 
    <version>3.8.0</version>
 
  </dependency>
 
 
  '''import''' weka.classifiers.functions.LinearRegression;
 
  '''import''' weka.core.Instance;
 
  '''import''' weka.core.Instances;
 
 
  <font color="green">//Load Data set</font>
 
  '''var''' data = new Instances(new BufferedReader(new FileReader("dataset/house.arff")));
 
  data.setClassIndex(data.numAttributes() - 1);
 
  <font color="green">//Build model</font>
 
  '''var''' model = new LinearRegression();
 
  '''try''' { model.buildClassifier(data); }
 
  '''catch''' (Exception e) { e.printStackTrace(); }
 
  <font color="green">//output model</font>
 
  System.out.printf("model parameters: %s%n", model);
 
  <font color="green">// Now Predicting the cost</font>
 
  '''var''' myHouse = data.lastInstance();
 
  '''var''' price  = model.classifyInstance(myHouse);
 
  System.out.printf("predicted price = %s%n", price)
 
  
 
==Применение==
 
==Применение==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: