Линейность математического ожидания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
{{
 
Теорема
 
|author=Кэли(''Cayley'')
 
|about=о вложении любой конечной группы в группу перестановок
 
|statement=
 
Любая конечная группа <tex>G</tex> изоморфна некоторой подгруппе группы перестановок (симметрической группе).
 
 
|proof=
 
Пусть <tex>*</tex> - бинарная операция в группе <tex>G</tex>. Рассмотрим некоторый элемент <tex>g \in G</tex> и функцию <tex>f_g : G \rightarrow G, f_g(x) = g*x</tex>. Вследствие существования обратного к <tex>g</tex> элемента <tex>g^{-1}</tex>, у этой функции есть обратная к ней <tex>f^{-1}_g</tex> , и поэтому <tex>f_g</tex> - перестановка.
 
 
 
Пусть <tex>\circ</tex> - композиция двух перестановок.
 
Пусть <tex>\circ</tex> - композиция двух перестановок.
 
Рассмотрим множество <tex>K = \{f_g : g \in G\}</tex>. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что <tex>G</tex> и <tex>K</tex>  изоморфны. Для этого рассмотрим функцию <tex>T : G \rightarrow K,\, T(x) = f_x</tex>. Заметим, что
 
Рассмотрим множество <tex>K = \{f_g : g \in G\}</tex>. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что <tex>G</tex> и <tex>K</tex>  изоморфны. Для этого рассмотрим функцию <tex>T : G \rightarrow K,\, T(x) = f_x</tex>. Заметим, что

Версия 02:38, 17 декабря 2010

Пусть [math]\circ[/math] - композиция двух перестановок. Рассмотрим множество [math]K = \{f_g : g \in G\}[/math]. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что [math]G[/math] и [math]K[/math] изоморфны. Для этого рассмотрим функцию [math]T : G \rightarrow K,\, T(x) = f_x[/math]. Заметим, что

  • [math]T(g)\circ T(h) = T(g*h)[/math].

Действительно, для всех [math]x \in G \quad(f_g \circ f_h)(x) = f_g(f_h(x)) = f_g(h * x) = g*(h*x) = (g*h)*x = f_{(g*h)}(x)[/math], а тогда [math]T(g)\circ T(h) = f_g \circ f_h = f_{(g*h)} = T(g*h)[/math].

  • [math]T[/math] - инъекция, потому что [math]f_g(x) = f_{g'}(x) \Rightarrow g = f_g(x)*x^{-1} = f_{g'}(x)*x^{-1} = g'[/math].
  • Сюрьективность [math]T[/math] очевидна из определения [math]K[/math].

То есть [math]T[/math] - гомоморфизм, а значит изоморфизм [math]G[/math] и [math]K[/math] установлен.

}}

Источники