Изменения

Перейти к: навигация, поиск

Линейно ограниченный автомат

9397 байт добавлено, 19:40, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение
|definition = '''Линейно ограниченный автомат''' (англ. ''linear bounded automata'', ''(lba)'' ) — недетерминированная одноленточная [[Машина Тьюринга|машина Тьюринга]], которая никогда не покидает те ячейки, на которых размещен ее ввод.}}
Более формально:
{{Определение
|definition = '''Линейно ограниченный автомат''' ''(lba)'' — формальная система <tex>M = (\langle Q, \Sigma, \Gamma, \delta, q_0, F)\rangle</tex>, в которой*<tex>Q</tex> — множество состояний.,*<tex>q_0 \in Q</tex> — начальное состояние.,*<tex>F \subset Q</tex> — множество конечных состояний.,*<tex>\Gamma</tex> — алфавит допустимых символов ленты.,*<tex>\Sigma \subset \Gamma</tex> — алфавит входных символов, который содержит два особых символа: <tex>\#</tex> и <tex>\$</tex> — левый и правый маркеры, находящиеся с самого начала на концах входной цепочки для того, чтобы предотвращать выход головки ленты за пределы участка, на котором размещается входная цепочка (считается, что маркеры могут использоваться только в этой роли: на место маркера нельзя записать какой-нибудь другой символ ленты, и никакой символ ленты не может быть заменен каким-нибудь маркером).,*<tex>\delta</tex> — отображение типа <tex>Q \times \Gamma \to 2^{Q \times \Gamma \times \{\leftarrow, \rightarrow\}}</tex>.}} Из определения следует, что языком, принимаемым линейно ограниченным автоматом <tex>M</tex>, называется множество  <tex>L(M)=\{w\mid w\in (\Sigma \setminus \{\#, R\$\})^*,\ (q0,\ \#w\$,\ 1) \vdash^*_M (q,\ \#\alpha\$,\ i),\ q\in F,\ \alpha \in \Gamma^*</tex><tex>,\ 1 \leqslant i \leqslant n,\ n = |w| + 2\}.</tex>  ==Связь линейно ограниченных автоматов с контекстно-зависимыми языками== {{Теорема|statement=Если <tex>L</tex> — [[Иерархия Хомского формальных грамматик#Класс 1|контекстно-зависимый язык]], то язык <tex>L</tex> принимается некоторым линейно ограниченным автоматом. |proof=Пусть <tex>\Gamma = \langle \Sigma , N, S, P\rangle</tex> — контекстно-зависимая грамматика. Мы построим линейный ограниченный автомат <tex>M</tex>, такой, что язык, принимаемый <tex>M</tex>, есть <tex>L(\Gamma)</tex>. Входная лента будет иметь две дорожки. Первая дорожка будет содержать входную строку <tex>x (x \ne \varepsilon)</tex> с концевыми маркерами. Вторая дорожка будет использоваться для работы.  На первом шаге <tex>M</tex> помещает символ <tex>S</tex> в крайнюю левую ячейку второй дорожки. Затем автомат входит в порождающую подпрограмму, которая выполняет следующие шаги: #Подпрограмма выбирает последовательные подстроки символов <tex>\alpha</tex> на второй дорожке, такие, что <tex>\alpha \rightarrow \beta \in P</tex>. #Подстроки <tex>\alpha</tex> заменяются на <tex>\beta</tex>, сдвигая вправо, если необходимо, символы, расположенные справа от <tex>\alpha</tex>. Если эта операция заставляет символ быть вытолкнутым за правый маркер, автомат останавливается. Как известно, промежуточные сентенциальные формы в контекстно-зависимой грамматике не длиннее, чем выводимая терминальная цепочка. Так что, если на очередном шаге получена строка длиннее <tex>x</tex>, то продолжать процесс не имеет смысла, потому что все последующие строки будут разве лишь длиннее. #Подпрограмма недетерминированно выбирает, возвращаться ли к шагу 1, либо идти на выход.#При выходе из подпрограммы первая дорожка все еще будет содержать строку <tex>x</tex>, в то время как вторая дорожка будет содержать некоторую строку <tex>y</tex>, такую, что <tex>S \Rightarrow^*_M y</tex>.  Автомат <tex>M</tex> сравнивает посимвольно цепочки <tex>x</tex> и <tex>y</tex>. Если окажется, что <tex>x \ne y</tex>, то автомат останавливается, не принимая, если же окажется, что <tex>x = y</tex>, то он останавливается, принимая входную цепочку. Ясно, что если <tex>x \in L(\Gamma )</tex>, то найдется такая последовательность движений <tex>M</tex>, которая сгенерирует цепочку <tex>x</tex> на второй дорожке, и тогда автомат остановится, принимая. Аналогично, если <tex>M</tex> принимает цепочку <tex>x</tex>, то должна существовать последовательность движений, генерирующих цепочку <tex>x</tex> на второй дорожке. Только при таком условии <tex>M</tex> принимает цепочку <tex>x</tex>. Но, по построению, процесс генерации <tex>x</tex> воспроизводит вывод этой цепочки из <tex>S</tex>. Следовательно, <tex>S \Rightarrow^*_M x</tex>. }}  {{Теорема|statement=Если язык <tex>L</tex> принимается линейно ограниченным автоматом, то <tex>L</tex> — контекстно-зависимый язык. |proof=Доказательство схоже с доказательством [[Возможность порождения формальной грамматикой произвольного перечислимого языка|теоремы о формальной грамматике, генерирующая язык, распознаваемый МТ]]. Для доказательства этой теоремы построим контекстно-зависимую грамматику, которая моделирует линейно ограниченный автомат.Нетерминалы контекстно-зависимой грамматики должны указывать не только первоначальное содержание некоторой ячейки ленты линейно ограниченного автомата, но также и то, является ли эта ячейка смежной с концевым маркером слева или справа. Такие ячейки в обозначении нетерминалов мы будем снабжать маркерами <tex>\#</tex> и <tex>\$</tex>, обозначающими, что ячейка граничит соответственно с левым, правым или обоими концевыми маркерами. В обозначении нетерминала состояние линейно ограниченного автомата должно также комбинироваться с символом, находящимся под головкой ленты. Контекстно-зависимая грамматика не может иметь отдельных символов для концевых маркеров и состояния линейно ограниченного автомата, потому что эти символы должны были бы заменяться на пустые цепочки, когда строка превращается в терминальную, а <tex>\varepsilon</tex>-порождения в контекстно-зависимой грамматике запрещены. В грамматике необходимо поддерживать три типа операций:* Операции, которые генерирую две копии строки, наряду с некоторыми символами, которые выполняют роль маркеров, чтобы разделять эти копии.* Операции, которые симулируют некоторую последовательность действий линейно ограниченного автомата <tex>M</tex>. Во время их выполнения, одна из двух копий оригинальной строки остается неизменной, другая же представляет из себя входную ленту <tex>M</tex> и соответствующе изменяется.* Операции, которые могут удалить всё кроме не измененной копии строки. Применяются, когда, симулированная на другой копии исходной строки, последовательность действий <tex>M</tex> привела к принимающему состоянию. Более подробное доказательство приведено в книге<ref>[http://www.math.spbu.ru/user/mbk/PDF/ Мартыненко Б.К. Языки и трансляции cтр. 115]</ref>. }} == См. также ==* [[Лямбда-исчисление]]* [[Счетчиковые машины, эквивалентность двухсчетчиковой машины МТ]] == Примечания ==<references/> == Источники информации ==* [http://drona.csa.iisc.ernet.in/~deepakd/atc-2011/lba.pdf| Linear Bounded Automata] [[Категория: Теория формальных языков]][[Категория: Теория вычислимости]][[Категория: Вычислительные формализмы]]
1632
правки

Навигация