Изменения

Перейти к: навигация, поиск

Линейные операторы в нормированных пространствах

665 байт добавлено, 06:07, 14 сентября 2012
Нет описания правки
#: <tex> \mathcal{A} \left( \Delta x \right) \xrightarrow [\Delta x \to 0]{} 0 </tex>.
#: А непрерывен в 0, следовательно, непрерывен и на X.
# Пусть <tex>\mathcal{A}</tex> {{---}} непрерывен на X, тогда в частности, в <tex> 0 = \lim \limits_{x \to 0} \mathcal{A}(x) </tex>, тогда:#: Подставляем в определение <tex>\varepsilon = 1: ~ \exists \delta > 0: \forall z: \left \| x z \right \| \le \delta</tex> и, значит, при <tex> x \to 0 Rightarrow ~ \left \| \mathcal{A}(xz) \right \| \le \varepsilon = 1</tex>#: * Для <tex>x = 0</tex> условие ограничения будет соблюдено при любом <tex>m</tex>.#* Для <tex>\forall x \ne 0</tex> рассмотрим <tex>z = \frac{\delta}{2} \frac {x}{\left \| x \right \|}.\quad</tex>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<tex> \left \| z \right \| = \frac{\delta}{2} < \delta \Rightarrow \left \| \mathcal{A}(z) \right \| \le 1 </tex>#*: Но <tex>\mathcal{A} \left ( z \right ) = \frac {\delta}{2 \left \| x \right \|} \mathcal{A}(x) </tex>. Значит, <tex> \| \mathcal{A}(z) \| = \frac {\delta}{2 \| x \|} \| \mathcal{A}(x) \| \le 1</tex>, таким образом, <tex> \| \mathcal{A}(x) \| \le \frac2{\delta} \| x \|</tex>#: Очевидно, это верно и для <tex>x = 0</tex>. Выберем <tex> m = \frac2{\delta} </tex>, поэтому и получим, что оператор ограничен.
}}
<tex>\mathcal{A}\colon \mathbb{R}^n \to \mathbb{R}^m, \overline x \in \mathbb{R}^n, \overline x = \sum \limits_{k=1}^n x_k \overline {e_k}, x_k=
\left \langle \overline x, \overline {e_k}\right \rangle</tex>. Тогда <tex>\mathcal{A} \left (\overline {x_kx} \right ) = \sum \limits_{k=1}^n x_k \mathcal{A} \left ( \overline {e_k} \right ) </tex>
Таким образом, если оператор действует из конечномерного пространства, то он вполне определён по его значению на базисных точках. Если он действует в конечномерное пространство, <tex>\mathcal{A} \left ( \overline {e_k} \right ) = \sum \limits_{j=1}^m a_{jk} \overline{e_j}'</tex>.
<tex>\mathcal{A} \left ( \overline x \right ) = \sum \limits_{k=1}^n \sum \limits_{j=1}^m \left ( a_{jk}x_k\overline{e_j}' \right ) = \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk} x_k \right ) \overline{e_j}' </tex>
{{Утверждение|statement=<tex>\left \| \mathcal{A} \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2}</tex>|proof=<tex>\overline y = \mathcal{A} \overline x, y_j = \sum \limits_{k=1}^n a_{jk} x_k</tex> — здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: <tex>\mathcal{A} \colon \mathbb{R}^n \to \mathbb{R}^m \longleftrightarrow \mathcal{A} = \left ( a_{jk} \right )</tex>, где <tex>j</tex> и <tex>k</tex> пробегают от <tex>1</tex> до <tex>n</tex> до и <tex>m</tex> соответственно, а <tex>\mathcal{A} \overline x </tex> — результат действия л.о. <tex>\mathcal{A}</tex> на точку <tex>\overline x</tex> можно представить в виде произведения матрицы <tex>\mathcal{A}</tex> и столбца <tex>x</tex>.
В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex> (по неравенству Коши для сумм), таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex>
<tex> y^{2}_j \le \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \| ^ 2 </tex>.
<tex>\left \| \overline y \right \| ^ 2 \le \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \|^2</tex>
<tex>\left \| \mathcal{A} \overline x \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2} \left \| \overline x \right \|</tex>
Таким образом, финальная оценка — <tex>\left \| \mathcal{A} \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2}</tex>. Но, в общем случае, эта оценка достаточно грубая.
}}
{{Определение
|definition=
'''Линейный функционал''' - линейный оператор вида <tex> \mathcal{A}: H \rightarrow \mathbb{R} </tex>, где <tex> H </tex> - гильбертово пространство.
{{TODO|t=точно так?}}
}}
# <tex>\left \| f \right \| = 1</tex>
|proof=
Для <tex> x_0 = 0 </tex> подойдет любой линейный функционал, такой, что <tex> \|xf\| = 1 </tex>, поэтому рассмотрим <tex> x_0 \ne 0 </tex>.
Рассмотрим <tex>H</tex>-пространство(гильбертово). Фиксируем <tex> y \in H </tex> и определим <tex>f\left ( x \right )=\left (x,y\right)</tex>. <tex>f </tex> — линейный функционал.
По неравенству Шварца, <tex> \left | f \left ( x \right ) \right | \le \left \| y \right \| \left \| x \right \|</tex>, следовательно, <tex> \left \| f \right \| \le \left \| y \right \|, x = \frac y {\left \| y \right \|}, \left \| x \right \| = 1. \left | f \left ( x \right ) \right | = \left \| y \right \|</tex>.
Рассмотрим <tex> f \left ( x \right ) = \left (x, y_0 \right ), \left \| f \right \| = 1.~ f \left ( x_0 \right ) = \left ( x_0, \frac {x_0} {\left \| x_0 \right \|} \right ) = \left \| x_0 \right \|</tex>. Как раз это нам и нужно.
}}
 
{{Утверждение
|statement=
<tex>\forall x \ne y\ \exists</tex> линейный функционал <tex>\mathcal{A} : \mathcal{A}x \ne \mathcal{A}y</tex>
|about=Разделение точек
|proof=
Рассмотрим <tex>x-y</tex>. <tex>\exists \mathcal{A} : \mathcal{A}(x - y) = \| x- y\|</tex>.
По линейности, <tex>\mathcal{A}(x - y) = \mathcal{A}x - \mathcal{A}y</tex>. Значит, <tex>\mathcal{A}x \ne \mathcal{A}y</tex>.
}}
[[Нормированные пространства|<<]] [[Дифференцируемые отображения в нормированных пространствах|>>]]
[[Категория:Математический анализ 1 курс]]

Навигация