Изменения

Перейти к: навигация, поиск

Линейные функционалы

1571 байт добавлено, 00:25, 18 января 2017
м
Нет описания правки
|definition=
Пусть <tex>X</tex> ­— линейное множество. Отображение <tex> f\colon X \to \mathbb{R} </tex> {{---}} '''линейный функционал''', если
<tex>\forall \alpha, \beta \in \mathbb{R} \ \forall x, y \in X : f(\alpha x + \beta y) = \alpha f(x) + \beta f(xy)</tex>.
Обозначим <tex>X^*</tex> — совокупность линейных функционалов, определенных на множестве <tex>X</tex>.
2. Симметричность: <tex>x_1 \sim x_2 \implies x_2 \sim x_1</tex>
3. Транзитивность: <tex>x_2 x_1 \sim x_2,~ x_2 \sim x_3 \implies x_1 \sim x_3</tex>
{{Определение
Доказательство <tex> \Longleftarrow </tex>:
{{TODO | t = упражнение}}
 
(все шаги "туда" вроде бы равносильны)
}}
|statement=
Если <tex> f </tex> не является тождественно равным нулю, то <tex>\mathrm{Codim}\, \mathrm{Ker}\, f = 1 </tex>.
|proof=
 
[http://ru.wikibooks.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9_%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE_%D0%BF%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8B Более подробно]
Рассмотрим <tex>x_0 \in X : f(x_0) \not = 0 </tex>. Возьмем <tex>\forall x \in X</tex>, подберем <tex>\alpha</tex> такое, чтобы <tex>y = x - \alpha x_0 \in \mathrm{Ker}\, f</tex>.
<tex>f (x - \alpha x_0) = 0 \implies f(x) = \alpha f(x_0), \quad f(x_0) \not = 0 \implies \alpha = \frac{f(x)}{f(x_0)} </tex>. Предстваление Представление единственно: пусть есть два представления <tex>x = \alpha x_0 + y</tex> и <tex>x = \beta x_0 + y'</tex>, тогда <tex>(\beta - \alpha) x_0 + (y - y') = 0</tex>. Применим к обеим частям <tex>f</tex>, тогда <tex>(\beta - \alpha) f(x_0) + f(y - y') = f(0)</tex>, так как <tex> y - y' </tex> в ядре, получили <tex> f(x_0) = 0</tex>, то есть протипоречиепротиворечие. Нашли единственное представление, следовательно, [[Линейные функционалы#codimeqn|по предыдущему утверждению]], <tex>\mathrm{Codim}\, \mathrm{Ker}\, f = 1 </tex>.
}}
Для непрерывности надо превратить <tex>X</tex> в ТВП. Наиболее важный случай — когда <tex>X</tex> является НП.
Для функционального анализа значение имеют линейные непрерывные функционалы.
== Непрерывность функционала ==
\implies \lim f(y_n) = \lim f(y'_n) </tex>.
Таким образом , предел не зависит от выбора <tex> y_n </tex>.
Покажем, что <tex> \widetilde f </tex> ­— линейный и удовлетворяет условию теоремы:
* <tex>\widetilde f (x + x') = \lim f(y_n + y'_n) = \lim f(y_n) + f(y'_n)</tex><tex> = \lim f(y_n) + \lim f(y'_n) = \widetilde f(x) + \widetilde f(x')</tex>
* сужение: покажем, что <tex>\forall y \in Y: \widetilde f(y) = f(y)</tex>, как уже показали, можем выбрать любую последовательность, сходящуюся к <tex>y</tex>, тогда возьмем последовательность, состоящую только из <tex>y</tex>, очевидно, она сходится к <tex>y</tex> и значения функционалов совпадают
* сохранение нормы: по только что доказанному свойству сужения, на <tex>\| x \| \le 1, x \in Y</tex> функционал <tex>\widetilde f </tex> принимает все те значения, что и <tex>f</tex>, поэтому достаточно показать, что не найдется <tex>x: \| x \| \le 1, x \in X, x \notin Y: |\widetilde f(x)| > \|f\|</tex>. Пусть такой <tex>x</tex> нашелся со значением функционала <tex>\widetilde f(x) > 0</tex>, значит, он является пределом какой-то последовательности <tex>y_n</tex> в <tex>Y</tex>. Тогда по определению продолжения функционала и определению предела <tex>\forall \varepsilon > 0 \exists N \forall n \ge N: |f(y_n) - \widetilde f(x)| < \varepsilon</tex>, возьмем <tex>\varepsilon < \widetilde f(x) - \|f\|</tex>, тогда найдется такой номер <tex>N</tex>, что <tex>y_N \in Y, f(y_N) > \|f\|</tex>, то есть получили противоречие.
* непрерывность: вместо непрерывности можно показать ограниченность, а по только что доказанному, норма сохраняется, и функционал останется ограниченным
* единственность: любой функционал <tex>g</tex>, удовлетворяющий условию теоремы, непрерывен, а значит из <tex>y_n \rightarrow x</tex> следует <tex>g(y_n) \rightarrow g(x)</tex>, но <tex>y_n \in Y \Rightarrow g(y_n) = f(y_n)</tex>, то есть <tex>g(x) = \lim f(y_n)</tex>, то есть такой функционал может определяться только формулой выше.
}}
<tex>f</tex> — ограничен <tex>\iff \mathrm{Ker}\, f</tex> — замкнуто в <tex>X</tex>.
|proof=
*<tex>\implies</tex>: 
<tex>f</tex> — ограничен, значит непрерывен. По непрерывности функционала:<br>
<tex>x_n \to x \implies f(x_n) \to f (x) , \, x_n \in \mathrm{Ker}\, f</tex>, ~ все <tex>f(x_n) = 0</tex>, значит, и <tex>f(x) = 0 \implies x \in \mathrm{Ker}\, f</tex>то есть оно содержит пределы своих подполедовательностей подпоследовательностей <tex>\implies</tex> ядро замкнуто.* <tex>\Leftarrow </tex><tex>\mathrm{Ker}</tex> {{---}} замкнуто. <tex>\mathrm{Cl}\, \mathrm{Ker}\, f = \mathrm{Ker}\, f</tex>. Если <tex>x_n \in X ,\, x_n \to x \stackrel{?}{\implies} f(x_n) \to f(x)</tex>.<br><tex>\mathrm{Codim}\, \mathrm{Ker}\, f = 1</tex>, значит мы сможем представить <tex>x_n</tex> и <tex>x</tex> следуюшим образом:<br><tex>x_n = y_n + t_ne, \,y_n \in \mathrm{Ker}\, f, \, e \in X</tex><tex>x = y + te </tex>. Проверим <tex> x_n \to x \stackrel{?}{\implies} t_n \to t </tex>. Достаточно доказать, что <tex>\{ t_{n_k} \} \to t </tex>. Пусть <tex> t_{n_k} \to t' \implies t_{n_k} e \to t'e</tex> <tex> x_{n_k} (\to x) = y_{n_k} + t_{n_k} e (\to t'e)</tex> (по условию <tex>x_n \to x</tex>) Значит <tex>y_{n_k} \to y'</tex> (и <tex> x = y' + t'e</tex>) В силу замкнутости ядра т.к. <tex>y_{n_k} \in \mathrm{Ker}\, f \implies y' \in \mathrm{Ker}\, f </tex> Значит мы записали <tex> x = y' + t'e, \, y' \in \mathrm{Ker}\, f</tex>. Отсюда, т.к. представление единственно и <tex>t'=t</tex>, получаем, что в выражении <tex>x_n = y_n + t_ne, \, x_n \to x,\, y_n \to y,\, t_n \to t </tex>
<tex>f(x_n) = f(y_n) + t_nf(e) = t_nf(e) \to tf(e) = f(y + te) = f(x)Longleftarrow </tex>:{{TODO|t=тут была какая-то непонятная хрень, запилил хорошее доказательство с [http://en.wikibooks.org/wiki/Functional_Analysis/Banach_spaces английской википедии]}}
Покажем, что если <tex>f</tex> не ограничен, <tex>\mathrm{Ker}\, f</tex> — не замкнуто в <tex>X</tex>. Рассмотрим определение неограниченности: <tex>\forall n \exists u_n: \|u_n\| = 1, f(u_n) \ge n </tex> (заметим, что в классическом определении <tex>|f(u_n)| \ge n</tex>, однако по линейности пространства если оказалось, что <tex>f(u_n) \le -n</tex>, возьмем <tex>-u_n: f(-u_n) \ge n</tex>), теперь определим последовательность <tex>v_n = \frac{u_n}{f(u_n)}</tex>, очевидно, <tex>\|v_n\| \le \frac{1}{n}</tex>, то есть <tex>v_n \to 0</tex>. Теперь возьмем <tex> a \notin \mathrm{Ker}\, f</tex> и определим последовательность <tex>z_n = a - f(a) v_n</tex>. Каждый элемент <tex>z_n</tex> содержится в ядре, так как <tex>f(z_n) = f(a) - f(a) f(v_n) = f(a) (1 - f(v_n)) = 0</tex> (воспользуемся тем, что <tex>f(v_n) = \frac{f(v_n)}{f(v_n)} = 1</tex>). Однако последовательность <tex>z_n</tex> стремится к <tex>a</tex>, так как <tex>v_n \to 0</tex>, то есть стремится к элементу не из ядра. Таким образом, предъявили последовательность элементов в ядре, сходящуюся к элементу не из ядра и ядро не замкнуто.
}}
}}
Ссылочки:== Ссылки ==
* [http://en.wikipedia.org/wiki/Quotient_space Quotient space]
* [http://en.wikipedia.org/wiki/Quotient_space_(linear_algebra) Quotient space (linear algebra)]
54
правки

Навигация