Редактирование: Логистическая регрессия

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 4: Строка 4:
 
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество [[Независимые случайные величины|независимых]] переменных <tex>x_1, ... x_n</tex> на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной.
 
Логистическая регрессия применяется для прогнозирования вероятности возникновения некоторого события по значениям множества признаков. Для этого вводится зависимая переменная $y$, принимающая значения $0$ и $1$ и множество [[Независимые случайные величины|независимых]] переменных <tex>x_1, ... x_n</tex> на основе значений которых требуется вычислить вероятность принятия того или иного значения зависимой переменной.
  
Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ {{---}} конечное множество меток классов и задана обучающая выборка пар «объект-ответ» <tex>X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}.</tex>
+
Итак, пусть объекты задаются $n$ числовыми признаками $f_j : X \to R, j = 1 ... n$ и пространство признаковых описаний в таком случае $X = R^n$. Пусть $Y$ $-$ конечное множество меток классов и задана обучающая выборка пар «объект-ответ» <tex>X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}.</tex>
  
 
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида  
 
Рассмотрим случай двух классов: $Y = \{-1, +1\}$. В логистической регрессии строится линейный алгоритм классификации $a: X \to Y$ вида  
<center><tex>a(x, w) = \mathrm{sign}\left(\sum\limits_{j=1}^n w_j f_j(x) - w_0 \right)=\mathrm{sign}\left<x, w\right></tex>,</center>
+
<center><tex>a(x, w) = \mathrm{sign}\left(\sum\limits_{j=1}^n w_j f_j(x) - w_0 \right)=\mathrm{sign}\left<x, w\right></tex></center>,
 
где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$.
 
где $w_j$ $-$ вес $j$-го признака, $w_0$ $-$ порог принятия решения, $w=\left(w_0, ..., w_n\right)$ $-$ вектор весов, $\left<x, w\right>$ $-$ скалярное произведение признакового описания объекта на вектор весов. Предполагается, что искусственно введён нулевой признак: $f_{0}(x)=-1$.
  
Задача обучения линейного классификатора заключается в том, чтобы по выборке  $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида: <center><tex>Q(w) = \sum\limits_{i=1}^m \ln\left( 1 + \exp( -y_i \langle x_i,w \rangle ) \right) \to \min_{w}</tex>,</center>
+
Задача обучения линейного классификатора заключается в том, чтобы по выборке  $X^m$ настроить вектор весов $w$. В логистической регрессии для этого решается задача минимизации эмпирического риска с функцией потерь специального вида: <center><tex>Q(w) = \sum\limits_{i=1}^m \ln\left( 1 + \exp( -y_i \langle x_i,w \rangle ) \right) \to \min_{w}</tex></center>,
  
 
После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам:
 
После того, как решение $w$ найдено, становится возможным не только вычислять классификацию $a(x) = \mathrm{sign}\langle x,w \rangle$ для произвольного объекта $x$, но и оценивать апостериорные вероятности его принадлежности классам:
<center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex>,</center>
+
<center><tex>\mathbb{P}\{y|x\} = \sigma\left( y \langle x,w \rangle\right),\;\; y\in Y</tex></center>,
 
где $\sigma(z) = \frac1{1+e^{-z}}$ {{---}} сигмоидная функция.
 
где $\sigma(z) = \frac1{1+e^{-z}}$ {{---}} сигмоидная функция.
  
Строка 24: Строка 24:
 
*выборка прецедентов $\mathrm{X}^l=\{\left(x_1, y_1\right), ... ,\left(x_l, y_l\right)\}$  получена согласно вероятностному распределению с плотностью  
 
*выборка прецедентов $\mathrm{X}^l=\{\left(x_1, y_1\right), ... ,\left(x_l, y_l\right)\}$  получена согласно вероятностному распределению с плотностью  
 
<tex>p\left(x, y\right)=\mathrm{P}_yp_y\left(x\right)=\mathrm{P}\left(y|x\right)p\left(x\right)</tex>
 
<tex>p\left(x, y\right)=\mathrm{P}_yp_y\left(x\right)=\mathrm{P}\left(y|x\right)p\left(x\right)</tex>
где $\mathrm{P}_y$ {{---}} ''априорные вероятности'',
+
где $\mathrm{P}_y$ $-$ ''априорные вероятности'',
 
$p_y(x)$ $-$ ''функции правдоподобия'', принадлежащие экспонентному семейству плотностей (т.е. $p_y(x) = \exp \left( \langle\theta,x\rangle \cdot a(\delta) + b(\delta,\theta) + d(x,\delta) \right)$, где $a, b, d$ $-$ произвольные функции);
 
$p_y(x)$ $-$ ''функции правдоподобия'', принадлежащие экспонентному семейству плотностей (т.е. $p_y(x) = \exp \left( \langle\theta,x\rangle \cdot a(\delta) + b(\delta,\theta) + d(x,\delta) \right)$, где $a, b, d$ $-$ произвольные функции);
 
*функции правдоподобия имеют равные знаения параметра разброса $\delta$ и отличаются только значениями параметра сдвига $\theta_y$;
 
*функции правдоподобия имеют равные знаения параметра разброса $\delta$ и отличаются только значениями параметра сдвига $\theta_y$;
Строка 36: Строка 36:
 
<center><tex>a\left(x\right)=
 
<center><tex>a\left(x\right)=
 
\mathrm{sign}\left(\lambda_+\mathrm{P}\left(+1|x\right)-\lambda_-\mathrm{P}\left(-1|x\right)\right)=
 
\mathrm{sign}\left(\lambda_+\mathrm{P}\left(+1|x\right)-\lambda_-\mathrm{P}\left(-1|x\right)\right)=
\mathrm{sign}\left(\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)}-\frac{\lambda_-}{\lambda_+}\right)</tex>,</center>
+
\mathrm{sign}\left(\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)}-\frac{\lambda_-}{\lambda_+}\right)</tex></center>,
  
 
Рассмотрим отношение апостериорных вероятностей классов   
 
Рассмотрим отношение апостериорных вероятностей классов   
<center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)}</tex>,</center>
+
<center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)}</tex></center>
 
и распишем функции правдоподобия, используя экспонентную формулу с параметрами $\theta_y$ и $\delta$:
 
и распишем функции правдоподобия, используя экспонентную формулу с параметрами $\theta_y$ и $\delta$:
<center><tex>\frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)} = \exp\left(\langle\left(c_+(\delta)\theta_+-c_-(\delta)\theta_-\right), x\rangle+b_+(\delta, \theta_+)-b_-(\delta, \theta_-) + \ln\frac{\mathrm{P}_+}{\mathrm{P}_-}\right)</tex>,</center>
+
<center><tex>\frac{\mathrm{P_+}p_+(x)}{\mathrm{P}_-p_-(x)} = \exp\left(\langle\left(c_+(\delta)\theta_+-c_-(\delta)\theta_-\right), x\rangle+b_+(\delta, \theta_+)-b_-(\delta, \theta_-) + \ln\frac{\mathrm{P}_+}{\mathrm{P}_-}\right)</tex></center>,
  
 
Рассмотрим получившуюся под экспонентой сумму:  
 
Рассмотрим получившуюся под экспонентой сумму:  
Строка 48: Строка 48:
  
 
Таким образом,  
 
Таким образом,  
<center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \mathrm{e}^{\langle w, x\rangle}</tex>,</center>
+
<center><tex>\frac{\mathrm{P}\left(+1|x\right)}{\mathrm{P}\left(-1|x\right)} = \mathrm{e}^{\langle w, x\rangle}</tex></center>,
  
 
Разделяющая поверхность в байесовском решающем правиле определяется уравнением  
 
Разделяющая поверхность в байесовском решающем правиле определяется уравнением  
<center><tex>\lambda_- \mathrm{P}\left(-1|x\right) = \lambda_+ \mathrm{P}\left(+1|x\right)</tex>,</center>
+
<center><tex>\lambda_- \mathrm{P}\left(-1|x\right) = \lambda_+ \mathrm{P}\left(+1|x\right)</tex></center>,
 
которое равносильно  
 
которое равносильно  
<center><tex>\langle w, x\rangle - \ln\frac{\lambda_-}{\lambda_+} = 0</tex>,</center>
+
<center><tex>\langle w, x\rangle - \ln\frac{\lambda_-}{\lambda_+} = 0</tex></center>,
 
 
 
Следовательно, разделяющая поверхность линейна и первый пункт теоремы доказан.
 
Следовательно, разделяющая поверхность линейна и первый пункт теоремы доказан.
  
 
Используя [[Формула полной вероятности|формулу полной вероятности]] получаем следующее равенство
 
Используя [[Формула полной вероятности|формулу полной вероятности]] получаем следующее равенство
<center><tex>\mathrm{P}\left(+1|x\right) + \mathrm{P}\left(-1|x\right) = \sigma\left(+\langle w ,x\rangle\right) + \sigma\left(-\langle w ,x\rangle\right) = 1</tex>,</center>
+
<center><tex>\mathrm{P}\left(+1|x\right) + \mathrm{P}\left(-1|x\right) = \sigma\left(+\langle w ,x\rangle\right) + \sigma\left(-\langle w ,x\rangle\right) = 1</tex></center>,
  
 
Откуда следует:
 
Откуда следует:
<center><tex>\mathrm{P}\left(y|x\right)=\sigma\left(\langle w, x\rangle y\right), y = \{-1, +1\}</tex>,</center>
+
<center><tex>\mathrm{P}\left(y|x\right)=\sigma\left(\langle w, x\rangle y\right), y = \{-1, +1\}</tex></center>,
 
Таким образом, второй пункт теоремы доказан.
 
Таким образом, второй пункт теоремы доказан.
 
}}
 
}}

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: