Марковская цепь — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Поглощающая цепь)
(Эргодическая цепь)
Строка 76: Строка 76:
 
|definition=
 
|definition=
 
'''Эргодическая''' марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса.
 
'''Эргодическая''' марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса.
 +
}}
 +
 +
Пусть <tex> N_{i, j} </tex> — множество таких <tex> n </tex>, что находясь в состоянии <tex> i </tex>, можно оказаться в состоянии <tex> j </tex> через <tex> n </tex> шагов. <tex> d_i </tex> — наибольший общий делитель чисел из множества <tex> N_{i, i} </tex>.
 +
 +
{{Лемма
 +
|statement=
 +
Для <tex> i </tex> и <tex> j </tex>, принадлежащих одному классу эквивалентности, <tex> d_i = d_j = d </tex> и числа из множества <tex> N_{i, j} </tex> сравнимы между собой по модулю <tex> d </tex>.
 +
|proof=
 +
Пусть <tex> a \in N_{i, j}, \ b \in N_{i, j}, \ c \in N_{j, i} </tex>. Из <tex> i </tex> можно попасть в <tex> j </tex> и обратно, значит, <tex> a + c \in N_{i, i} </tex>. Также после попадания в <tex> j </tex> можно сколько угодно раз перейти из него в самого себя, и только потом перейти в <tex> i </tex>, для этого понадобится <tex> a + k \cdot d_j + c </tex> шагов при любом достаточно большом <tex> k </tex>. Значит, <tex> d_j </tex> должно делиться на <tex> d_i </tex>. Но аналогично можно доказать, что <tex> d_i </tex> делится на <tex> d_j </tex>, поэтому <tex> d_i = d_j = d </tex>. Также можно перейти за <tex> b </tex> шагов в <tex> j </tex>, а потом попасть в <tex> i </tex>, поэтому <tex> b + c \in N_{i, i} </tex>. Значит, <tex> a + c </tex> и <tex> b + c </tex> оба делятся на <tex> d </tex>, то есть <tex> a </tex> и <tex> b </tex> сравнимы между собой по модулю <tex> d </tex>.
 +
}}
 +
 +
Введём числа <tex> t_{i, j}, 0 \leqslant t_{i, j} < d </tex>, так, что любой элемент из <tex> N_{i, j} </tex> сравним с <tex> t_{i, j} </tex> по модулю <tex> d </tex>.
 +
 +
{{Определение
 +
|definition=
 +
'''Циклический класс''' — класс, для любых элементов <tex> i </tex> и <tex> j </tex> которого верно равенство <tex> t_{i, j} = 0 </tex>.
 
}}
 
}}
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
В эргодической цепи можно выделить циклические классы. Количество циклических классов <tex> d </tex> называют '''периодом цепи''', если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые '''d''' шагов она оказывается в одном и том же циклическом классе. Таким образом, '''циклический класс''' — класс, в котором цепь оказывается каждый <tex> d </tex>-ый шаг.
+
Если цепь состоит целиком из одного циклического класса, её называют '''[[Регулярная марковская цепь|регулярной]]''', иначе — '''циклической'''.
 
}}
 
}}
  
Таким образом, эргодические цепи делятся на [[Регулярная марковская цепь|регулярные]] и '''циклические'''.
+
Если цепь циклическая, у неё есть некоторый период <tex> d > 1 </tex>, а её состояния подразделяются на <tex> d </tex> циклических классов. Цепь движется по циклическим классам в определённом порядке, возвращаясь в класс с начальным состоянием через <tex> d </tex> шагов.
  
 
=== Поглощающая цепь ===
 
=== Поглощающая цепь ===

Версия 20:09, 12 июня 2012

Определение:
Цепь Маркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем, что при фиксированном настоящем будущее независимо от прошлого.

Процесс в каждый момент времени находится в одном из [math] n [/math] состояний.

При этом, если он находится в состоянии с номером [math] i [/math], то он перейдет в состояние [math] j [/math] с вероятностью [math] p_{ij} [/math].

Матрицу [math] P = ||p_{ij}|| [/math] называют матрицей переходов.


На матрицу переходов накладываются следующие условия:

  1. [math] p_{ij} \geqslant 0 [/math]
  2. [math] \forall i\ \ \sum\limits_{j} p_{ij} = 1 [/math]

Такая матрица называется стохастической.

Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из [math] i [/math] в [math] j [/math] написана вероятность перехода из [math] i [/math] в [math] j [/math], то есть [math] p_{ij} [/math].

Распределение вероятностей

Марковскую цепь в любой момент времени [math] t [/math] можно охарактеризовать вектором-строкой [math] c_t [/math] — распределением вероятностей по состояниям цепи ([math] c_{ti} [/math] — вероятность цепи в момент времени [math] t [/math] быть в состоянии [math] i [/math]).

Если [math] c_i [/math] — текущее распределение вероятностей, то можно узнать распределение на следующем шаге, умножив вектор на матрицу перехода:

[math] c_{i + 1} = c_{i} \times P [/math].

Из ассоциативности произведения матриц следует, что для того, чтобы узнать распределение вероятностей через [math] t [/math] шагов, нужно умножить [math] c_i [/math] на матрицу перехода, возведённую в степень [math] t [/math]:

[math] c_{i + t} = c_{i} \times P^t [/math].

Для марковской цепи иногда задают начальное распределение [math] c_0 [/math], хотя во многих классах марковских цепей распределение по прошествии большого периода времени от него не зависит (такое распределение называют предельным).

Достижимость и сообщаемость

Обозначим вероятность попасть из состояния [math] i [/math] в состояние [math] j [/math] за [math] n [/math] переходов как [math] p_{ij}^{(n)} [/math].


Определение:
Состояние [math] j [/math] достижимо (accesible) из состояния [math] i [/math], если существует такое [math] n [/math], что [math] p_{ij}^{(n)} \gt 0 [/math]. Достижимость [math] j [/math] из [math] i [/math] обозначается [math] i \rightarrow j [/math].


Определение:
Состояния [math] i [/math] и [math] j [/math] сообщаются (communicate), если они достижимы друг из друга. Сообщаемость [math] i [/math] и [math] j [/math] обозначается [math] i \leftrightarrow j [/math].


Классификация цепей и состояний

Неразложимая цепь

Определение:
Неразложимый класс (communicating class) — класс эквивалентности множества состояний по отношению сообщаемости. Если представить марковскую цепь как граф, неразложимый класс будет аналогичен компоненте сильной связности.


Определение:
Неразложимая цепь (ireducible chain) — цепь Маркова, в которой все состояния образуют один неразложимый класс.


Эргодическая цепь

Определение:
Упорядочим (очевидно, упорядочение будет частичным) неразложимые классы отношением достижимости. Минимальные элементы в таком упорядочении называются эргодическими классами. Состояния в эргодических классах называются эргодическими (ergodic), возвратными, или существенными. Все остальные неразложимые классы называются невозвратными классами. Состояния, входящие в них, называются невозвратными или несущественными.


Определение:
Если эргодический класс состоит из одного состояния, такое состояние называется поглощающим (absorbing).


Из свойств частичного упорядочения, в любой цепи Маркова найдется хотя бы один эргодический класс.


Определение:
Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса.


Пусть [math] N_{i, j} [/math] — множество таких [math] n [/math], что находясь в состоянии [math] i [/math], можно оказаться в состоянии [math] j [/math] через [math] n [/math] шагов. [math] d_i [/math] — наибольший общий делитель чисел из множества [math] N_{i, i} [/math].

Лемма:
Для [math] i [/math] и [math] j [/math], принадлежащих одному классу эквивалентности, [math] d_i = d_j = d [/math] и числа из множества [math] N_{i, j} [/math] сравнимы между собой по модулю [math] d [/math].
Доказательство:
[math]\triangleright[/math]
Пусть [math] a \in N_{i, j}, \ b \in N_{i, j}, \ c \in N_{j, i} [/math]. Из [math] i [/math] можно попасть в [math] j [/math] и обратно, значит, [math] a + c \in N_{i, i} [/math]. Также после попадания в [math] j [/math] можно сколько угодно раз перейти из него в самого себя, и только потом перейти в [math] i [/math], для этого понадобится [math] a + k \cdot d_j + c [/math] шагов при любом достаточно большом [math] k [/math]. Значит, [math] d_j [/math] должно делиться на [math] d_i [/math]. Но аналогично можно доказать, что [math] d_i [/math] делится на [math] d_j [/math], поэтому [math] d_i = d_j = d [/math]. Также можно перейти за [math] b [/math] шагов в [math] j [/math], а потом попасть в [math] i [/math], поэтому [math] b + c \in N_{i, i} [/math]. Значит, [math] a + c [/math] и [math] b + c [/math] оба делятся на [math] d [/math], то есть [math] a [/math] и [math] b [/math] сравнимы между собой по модулю [math] d [/math].
[math]\triangleleft[/math]

Введём числа [math] t_{i, j}, 0 \leqslant t_{i, j} \lt d [/math], так, что любой элемент из [math] N_{i, j} [/math] сравним с [math] t_{i, j} [/math] по модулю [math] d [/math].


Определение:
Циклический класс — класс, для любых элементов [math] i [/math] и [math] j [/math] которого верно равенство [math] t_{i, j} = 0 [/math].


Определение:
Если цепь состоит целиком из одного циклического класса, её называют регулярной, иначе — циклической.


Если цепь циклическая, у неё есть некоторый период [math] d \gt 1 [/math], а её состояния подразделяются на [math] d [/math] циклических классов. Цепь движется по циклическим классам в определённом порядке, возвращаясь в класс с начальным состоянием через [math] d [/math] шагов.

Поглощающая цепь

Определение:
Поглощающее состояние — состояние, из которого нельзя попасть ни в какое другое, то есть [math] i [/math] — поглощающее состояние, если [math] p_{ii} = 1 [/math].


Определение:
Поглощающей (absorbing chain) называется марковская цепь, в которой есть хотя бы одно поглощающее состояние и из любого состояния достижимо хотя бы одно поглощающее.


В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.

Пример

Пример марковской цепи

На рисунке:

  • достижимыми состояниями являются: [math] 2 [/math] из [math] 1 [/math] (непосредственно), [math] 3 [/math] из [math] 1 [/math] (непосредственно), [math] 6 [/math] из [math] 3 [/math] (к примеру, через цепочку состояний [math] 3 \rightarrow 2 \rightarrow 4 \rightarrow 6 [/math]) и т.д.
  • сообщаются состояния [math] 1 [/math] и [math] 2 [/math] (непосредственно), [math] 6 [/math] и [math] 7 [/math] (непосредственно), [math] 1 [/math] и [math] 3 [/math] (достижимы друг из друга) и т. д.
  • неразложимыми классами являются множества вершин [math] \left \{ 1, 2, 3 \right \} [/math], [math] \left \{ 4 \right \} [/math], [math] \left \{ 5 \right \} [/math], [math] \left \{ 6, 7 \right \} [/math];
  • эргодическими классами являются множества вершин [math] \left \{ 5 \right \} [/math], [math] \left \{ 6, 7 \right \} [/math];
  • поглощающим состоянием является состояние [math] 5 [/math].
  • если расматривать [math] \{6, 7\} [/math] отдельно, можно выделить два циклических класса [math] \{6\} [/math] и [math] \{7\} [/math] (на каждом шаге цепь переходит из одного состояния в другое, а через [math] d = 2 [/math] шага возвращается в одно и то же состояние.

Литература

  • И.В. Романовский «Дискретный анализ». 3-е изд., 2003. стр. 270—279
  • Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"
  • Википедия — Цепь Маркова