Машина Тьюринга — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(тикет 3.14)
Строка 1: Строка 1:
'''Машина Тьюринга''' (англ. ''Turing machine'') — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое - проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе - не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.
+
'''Машина Тьюринга''' (англ. ''Turing machine'') — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.
  
 
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
 
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
Строка 11: Строка 11:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Формально '''машина Тьюринга''' определяется как кортеж из восьми элементов <tex>\langle \Sigma, \Pi, B, Q, Y, N, S, \delta \rangle</tex>, где
+
Формально '''машина Тьюринга''' (англ. ''Turing machine'') определяется как кортеж из восьми элементов <tex>\langle \Sigma, \Pi, B, Q, Y, N, S, \delta \rangle</tex>, где
* <tex>\Sigma</tex> — алфавит, из букв которого могут состоять входные слова
+
* <tex>\Sigma</tex> — алфавит, из букв которого могут состоять входные слова,
* <tex>\Pi \supset \Sigma</tex> — символы, которые могут быть записаны на ленту в процессе работы машины
+
* <tex>\Pi \supset \Sigma</tex> — символы, которые могут быть записаны на ленту в процессе работы машины,
* <tex>B \in \Pi \setminus \Sigma</tex> ­— пробельный символ (от слова ''blank'')
+
* <tex>B \in \Pi \setminus \Sigma</tex> ­— пробельный символ (от слова ''blank''),
* <tex>Q</tex> — множество состояний управляющего автомата
+
* <tex>Q</tex> — множество состояний управляющего автомата,
* <tex>Y \in Q</tex> — допускающее состояние автомата
+
* <tex>Y \in Q</tex> — допускающее состояние автомата,
* <tex>N \in Q</tex> — отвергающее состояние автомата
+
* <tex>N \in Q</tex> — отвергающее состояние автомата,
* <tex>S \in Q</tex> — стартовое состояние автомата
+
* <tex>S \in Q</tex> — стартовое состояние автомата,
 
* <tex>\delta : Q \times \Pi \to Q \times \Pi \times \{ \leftarrow, \rightarrow, \downarrow \}</tex> — всюду определённая функция перехода автомата
 
* <tex>\delta : Q \times \Pi \to Q \times \Pi \times \{ \leftarrow, \rightarrow, \downarrow \}</tex> — всюду определённая функция перехода автомата
 
}}
 
}}
Строка 36: Строка 36:
 
|definition=
 
|definition=
 
Определим на конфигурациях отношение перехода <tex>\langle w_1, q_1, v_1 \rangle \vdash \langle w_2, q_2, v_2 \rangle</tex>:
 
Определим на конфигурациях отношение перехода <tex>\langle w_1, q_1, v_1 \rangle \vdash \langle w_2, q_2, v_2 \rangle</tex>:
* если <tex>\delta(q, x) = \langle p, y, \leftarrow \rangle</tex>, то <tex>\langle wz, q, xv \rangle \vdash \langle w, p, zyv \rangle</tex>
+
* если <tex>\delta(q, x) = \langle p, y, \leftarrow \rangle</tex>, то <tex>\langle wz, q, xv \rangle \vdash \langle w, p, zyv \rangle</tex>,
* если <tex>\delta(q, x) = \langle p, y, \rightarrow \rangle</tex>, то <tex>\langle w, q, xv \rangle \vdash \langle wy, p, v \rangle</tex>
+
* если <tex>\delta(q, x) = \langle p, y, \rightarrow \rangle</tex>, то <tex>\langle w, q, xv \rangle \vdash \langle wy, p, v \rangle</tex>,
* если <tex>\delta(q, x) = \langle p, y, \downarrow \rangle</tex>, то <tex>\langle w, q, xv \rangle \vdash \langle w, p, yv \rangle</tex>
+
* если <tex>\delta(q, x) = \langle p, y, \downarrow \rangle</tex>, то <tex>\langle w, q, xv \rangle \vdash \langle w, p, yv \rangle</tex>,
  
 
Особо следует рассмотреть случай переходов по пробельному символу:
 
Особо следует рассмотреть случай переходов по пробельному символу:
Строка 146: Строка 146:
 
|proof=Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с ''бесконечной лентой'' следующим образом:
 
|proof=Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с ''бесконечной лентой'' следующим образом:
  
[[Файл:Mt1.jpg]]
+
[[Файл:Mt1.png]]
  
 
Затем перенумеруем ячейки, и запишем символ <tex>c \in \Pi \setminus \Sigma, B</tex> в начало ленты, который будет означать границу рабочей зоны:
 
Затем перенумеруем ячейки, и запишем символ <tex>c \in \Pi \setminus \Sigma, B</tex> в начало ленты, который будет означать границу рабочей зоны:
  
[[Файл:Mt2.jpg]]
+
[[Файл:Mt2.png]]
  
 
Наконец, изменим машину Тьюринга, удвоив число её состояний, и изменим сдвиг головки так, чтобы в одной группе состояний работа машины была бы эквивалентна её работе в заштрихованной зоне, а в другой группе состояний машина работала бы так, как исходная машина работает в незаштрихованной зоне. Если при работе машины Тьюринга встретится символ <tex>c</tex>, значит головка достигла границы рабочей зоны:
 
Наконец, изменим машину Тьюринга, удвоив число её состояний, и изменим сдвиг головки так, чтобы в одной группе состояний работа машины была бы эквивалентна её работе в заштрихованной зоне, а в другой группе состояний машина работала бы так, как исходная машина работает в незаштрихованной зоне. Если при работе машины Тьюринга встретится символ <tex>c</tex>, значит головка достигла границы рабочей зоны:
Строка 165: Строка 165:
  
 
Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов <tex>*</tex> символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.
 
Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов <tex>*</tex> символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.
 
=== Другие эквивалентные вычислительные формализмы ===
 
Существуют также другие формализации понятия алгоритма, которые по вычислительным возможностям эквивалентны машинам Тьюринга:
 
* [[Стековые машины, эквивалентность двухстековой машины МТ|стековые машины]]
 
* [[Счетчиковые машины, эквивалентность двухсчетчиковой машины МТ|счётчиковые машины]]
 
* [[Линейный клеточный автомат, эквивалентность МТ|клеточные автоматы]]
 
* [[Возможность порождения формальной грамматикой произвольного перечислимого языка|произвольные формальные грамматики]]
 
* [[Лямбда-исчисление|нетипизированное лямбда-исчисление]]
 
  
 
Аланом Тьюрингом было сформулировано следующее утверждение:
 
Аланом Тьюрингом было сформулировано следующее утверждение:
Строка 185: Строка 177:
  
 
Существует машина Тьюринга, которая принимает на вход закодированное описание произвольной машины и входную строку и эмулирует работу закодированной машины на заданном входном слове. Иными словами, [[Разрешимые (рекурсивные) языки#Пример неразрешимого множества|универсальный язык]] перечислим с помощью машины Тьюринга. Ссылки на явные конструкции универсальных машин Тьюринга приведены ниже.
 
Существует машина Тьюринга, которая принимает на вход закодированное описание произвольной машины и входную строку и эмулирует работу закодированной машины на заданном входном слове. Иными словами, [[Разрешимые (рекурсивные) языки#Пример неразрешимого множества|универсальный язык]] перечислим с помощью машины Тьюринга. Ссылки на явные конструкции универсальных машин Тьюринга приведены ниже.
 +
 +
== См. также ==
 +
* [[Стековые машины, эквивалентность двухстековой машины МТ|стековые машины]]
 +
* [[Счетчиковые машины, эквивалентность двухсчетчиковой машины МТ|счётчиковые машины]]
 +
* [[Линейный клеточный автомат, эквивалентность МТ|клеточные автоматы]]
 +
* [[Возможность порождения формальной грамматикой произвольного перечислимого языка|произвольные формальные грамматики]]
 +
* [[Лямбда-исчисление|нетипизированное лямбда-исчисление]]
  
 
== Источники информации ==
 
== Источники информации ==
Строка 194: Строка 193:
  
 
[[Категория: Теория формальных языков]]
 
[[Категория: Теория формальных языков]]
 +
[[Категория: Теория вычислимости]]
 +
[[Категория: Вычислительные формализмы]]

Версия 17:19, 14 января 2016

Машина Тьюринга (англ. Turing machine) — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое — проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе — не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.

Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:

При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.

Определение

Определение машины

Определение:
Формально машина Тьюринга (англ. Turing machine) определяется как кортеж из восьми элементов [math]\langle \Sigma, \Pi, B, Q, Y, N, S, \delta \rangle[/math], где
  • [math]\Sigma[/math] — алфавит, из букв которого могут состоять входные слова,
  • [math]\Pi \supset \Sigma[/math] — символы, которые могут быть записаны на ленту в процессе работы машины,
  • [math]B \in \Pi \setminus \Sigma[/math] ­— пробельный символ (от слова blank),
  • [math]Q[/math] — множество состояний управляющего автомата,
  • [math]Y \in Q[/math] — допускающее состояние автомата,
  • [math]N \in Q[/math] — отвергающее состояние автомата,
  • [math]S \in Q[/math] — стартовое состояние автомата,
  • [math]\delta : Q \times \Pi \to Q \times \Pi \times \{ \leftarrow, \rightarrow, \downarrow \}[/math] — всюду определённая функция перехода автомата

Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга.

Определение процесса работы

Кроме формального определения самой машины требуется также формально описать процесс её работы. В определении для простоты будем предполагать, что головка в процессе работы не записывает на ленту символ [math]B[/math]. Это не ограничивает вычислительной мощности машин Тьюринга, поскольку для каждой машины можно сопоставить аналогичную ей, но не пищущую [math]B[/math] на ленту.

Определение:
Назовём конфигурацией машины Тьюринга тройку [math]\langle w, q, v \rangle[/math], где [math]q \in Q[/math] — текущее состояние автомата, а [math]w, v \in (\Pi \setminus \{B\})^*[/math] — строки слева и справа от головки до первого пробельного символа соответственно.

В данной записи головка находится над ячейкой, на которой написана первая буква [math]v[/math] (или [math]B[/math], если [math]v = \varepsilon[/math]).

В дальнейшем используются следующие обозначения: [math]x, y, z \in \Pi[/math], [math]w, v \in \Pi^*[/math]

Определение:
Определим на конфигурациях отношение перехода [math]\langle w_1, q_1, v_1 \rangle \vdash \langle w_2, q_2, v_2 \rangle[/math]:
  • если [math]\delta(q, x) = \langle p, y, \leftarrow \rangle[/math], то [math]\langle wz, q, xv \rangle \vdash \langle w, p, zyv \rangle[/math],
  • если [math]\delta(q, x) = \langle p, y, \rightarrow \rangle[/math], то [math]\langle w, q, xv \rangle \vdash \langle wy, p, v \rangle[/math],
  • если [math]\delta(q, x) = \langle p, y, \downarrow \rangle[/math], то [math]\langle w, q, xv \rangle \vdash \langle w, p, yv \rangle[/math],

Особо следует рассмотреть случай переходов по пробельному символу:

  • если [math]\delta(q, B) = \langle p, y, \leftarrow \rangle[/math], то [math]\langle wz, q, \varepsilon \rangle \vdash \langle w, p, zy \rangle[/math]
  • если [math]\delta(q, B) = \langle p, y, \rightarrow \rangle[/math], то [math]\langle w, q, \varepsilon \rangle \vdash \langle wy, p, \varepsilon \rangle[/math]
  • если [math]\delta(q, B) = \langle p, y, \downarrow \rangle[/math], то [math]\langle w, q, \varepsilon \rangle \vdash \langle w, p, y \rangle[/math]

Очевидно, что определённое отношение является функциональным: для каждой конфигурации [math]C[/math] существует не более одной конфигурации [math]C'[/math], для которой [math]C \vdash C'[/math].

Для машины Тьюринга, которая пишет символ [math]B[/math] на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода.

Результат работы

Машину Тьюринга можно рассматривать как распознаватель слов формального языка. Пусть [math]M[/math] — машина Тьюринга, распознаваемый ей язык определяется как [math]\mathcal L(M) = \{ x \in \Sigma^* \mid \exists y, z \in \Pi^*: \langle \varepsilon, S, x \rangle \vdash^* \langle y, Y, z \rangle \}[/math].

Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина [math]M[/math] задаёт вычислимую функцию [math]f[/math], причём [math]f(x) = y \Leftrightarrow \exists z \in \Pi^* : \langle \varepsilon, S, x \rangle \vdash^* \langle z, Y, y \rangle[/math]. Переход автомата в состояние [math]N[/math] можно интерпретировать как аварийное завершение программы (например, при некорретном входе).

Примеры машин-распознавателей и машин-преобразователей будут даны ниже.

Примеры машин Тьюринга

Прибавление единицы

Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий:

  • в стартовом состоянии головка идёт вправо от младшего бита к старшему, заменяя все единицы на нули,
  • встретив нуль или пробельный символ головка записывает единицу, после чего переходит в состояние [math]R[/math],
  • в состоянии [math]R[/math] головка идёт влево от старшего бита к младшему, не изменяя символы 0 и 1 на ленте,
  • встретив в состоянии [math]R[/math] пробельный символ, головка перемещается на один символ вправо и переходит в состояние [math]Y[/math], завершая работу.

Формально: [math]\Sigma = \{0, 1 \}[/math], [math]\Pi = \{0, 1, B\}[/math], [math]Q = \{S, R, Y, N \}[/math]. Таблица функции [math]\delta[/math] приведена ниже:

[math]0[/math] [math]1[/math] [math]B[/math]
[math]S[/math] [math]\langle R, 1, \downarrow \rangle[/math] [math]\langle S, 0, \rightarrow \rangle[/math] [math]\langle R, B, \leftarrow \rangle[/math]
[math]R[/math] [math]\langle R, 0, \leftarrow \rangle[/math] [math]\langle R, 1, \leftarrow \rangle[/math] [math]\langle Y, B, \rightarrow \rangle[/math]

Проверка того, является ли слово палиндромом

В качестве примера машины-распознавателя приведём машину, распознающую палиндромы над алфавитом [math]\{0, 1\}[/math]. Алгоритм следующий:

  • если строка на ленте — пустая, то перейти в допускающее состояние
  • надо запомнить первый символ слова в состоянии автомата,
  • стереть его,
  • перейти в конец ленты:
    • если оставшаяся строка на ленте — пустая, то перейти в допускающее состояние
    • если последний символ совпадает с запомненным, стереть его, перейти в начало ленты и повторить с первого шага
    • в случае несовпадения перейти в отвергающее состояние

Формально: [math]\Sigma = \{0, 1\}[/math], [math]\Pi = \{0, 1, B\}[/math], [math]Q = \{S, F_0, F_1, B_0, B_1, R \}[/math]. Таблица функции [math]\delta[/math] приведена ниже:

[math]0[/math] [math]1[/math] [math]B[/math]
[math]S[/math] [math]\langle F_0, B, \rightarrow \rangle[/math] [math]\langle F_1, B, \rightarrow \rangle[/math] [math]\langle Y, B, \downarrow \rangle[/math]
[math]F_0[/math] [math]\langle F_0, 0, \rightarrow \rangle[/math] [math]\langle F_0, 1, \rightarrow \rangle[/math] [math]\langle B_0, B, \leftarrow \rangle[/math]
[math]F_1[/math] [math]\langle F_1, 0, \rightarrow \rangle[/math] [math]\langle F_1, 1, \rightarrow \rangle[/math] [math]\langle B_1, B, \leftarrow \rangle[/math]
[math]B_0[/math] [math]\langle R, B, \leftarrow \rangle[/math] [math]\langle N, 1, \downarrow \rangle[/math] [math]\langle Y, B, \downarrow \rangle[/math]
[math]B_1[/math] [math]\langle N, 0, \downarrow \rangle[/math] [math]\langle R, B, \leftarrow \rangle[/math] [math]\langle Y, B, \downarrow \rangle[/math]
[math]R[/math] [math]\langle R, 0, \leftarrow \rangle[/math] [math]\langle R, 1, \leftarrow \rangle[/math] [math]\langle S, B, \rightarrow \rangle[/math]

Варианты машины Тьюринга

В этом разделе приведены различные варианты машин Тьюринга, которые не отличаются от обычных машин Тьюринга по вычислительной мощности.

Многодорожечная машина Тьюринга

Машиной Тьюринга с [math]n[/math] дорожками называется вычислитель, аналогичный машине Тьюринга, лишь с тем отличием, что лента состоит из [math]n[/math] дорожек, на каждой из которых записаны символы ленточного алфавита. У многодорожечной машины одна головка, которая за один шаг переходит в одном направлении на всех дорожках одновременно. Соответственно, функция перехода имеет тип [math]\delta : Q \times \Pi^n \to Q \times \Pi^n \times \{\leftarrow, \rightarrow, \downarrow\}[/math]. Многодорожечная машина Тьюринга тривиально эквивалентна обычной с ленточным алфавитом [math]\Pi' = \Pi^n[/math].

Машина Тьюринга с полубесконечной лентой

Заменив у машины Тьюринга бесконечную в обе стороны ленту на бесконечную в одну сторону, мы не теряем в вычислительной мощности. По произвольной машине Тьюринга строится двухдорожечная машина с полубесконечной лентой.

Теорема:
Для любой машины Тьюринга существует эквивалентная машина Тьюринга, работающая на полубесконечной ленте.
Доказательство:
[math]\triangleright[/math]

Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с бесконечной лентой следующим образом:

Mt1.png

Затем перенумеруем ячейки, и запишем символ [math]c \in \Pi \setminus \Sigma, B[/math] в начало ленты, который будет означать границу рабочей зоны:

Mt2.png

Наконец, изменим машину Тьюринга, удвоив число её состояний, и изменим сдвиг головки так, чтобы в одной группе состояний работа машины была бы эквивалентна её работе в заштрихованной зоне, а в другой группе состояний машина работала бы так, как исходная машина работает в незаштрихованной зоне. Если при работе машины Тьюринга встретится символ [math]c[/math], значит головка достигла границы рабочей зоны:

Mt3.jpg

Начальное состояние новой машины Тьюринга устанавливается в одной или другой зоне в зависимости от того, в какой части исходной ленты располагалась головка считывания-записи в исходной конфигурации.
[math]\triangleleft[/math]

Многоленточная машина Тьюринга

В отличие от многодорожечной машины Тьюринга, ленты не зависят друг от друга и головки во время одного шага могу перемещаться по-разному. То есть, функция перехода теперь имеет тип [math]\delta : Q \times \Pi^n \to Q \times \Pi^n \times \{\leftarrow, \rightarrow, \downarrow\}^n[/math].

Многоленточная машина с [math]n[/math] дорожками эмулируется многодорожечной машиной с [math]2n[/math] дорожками следующим образом: каждая нечётная дорожка соответствует ленте исходной машины, а на каждой чётной дорожке отмечены специальным символом [math]*[/math] позиция головки на ленте выше (считаем, что ленты нумеруются сверху вниз).

Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов [math]*[/math] символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.

Аланом Тьюрингом было сформулировано следующее утверждение:

Утверждение (Тезис Чёрча-Тьюринга):
Класс перечислимых языков совпадает с классом языков, перечислимых с помощью машин Тьюринга

Иными словами, тезис говорит о том, что любой алгоритм можно запрограммировать на машине Тьюринга.

Универсальная машина Тьюринга

Существует машина Тьюринга, которая принимает на вход закодированное описание произвольной машины и входную строку и эмулирует работу закодированной машины на заданном входном слове. Иными словами, универсальный язык перечислим с помощью машины Тьюринга. Ссылки на явные конструкции универсальных машин Тьюринга приведены ниже.

См. также

Источники информации