Мера подграфика

Материал из Викиконспекты
Версия от 20:36, 8 января 2012; Sementry (обсуждение | вклад) (исправил опечатки)
Перейти к: навигация, поиск

<<>>

Эта статья находится в разработке!

В этом параграфе будет дан геометрический смысл интеграла Лебега.


Определение:
Пусть [math] E \subset \mathbb R^n, f : E \to \mathbb R_+, f [/math] — измерима.
[math] G(f) = G = \{ (x_1 \ldots x_{n + 1}) \in \mathbb R^{n+1} : (x_1 \ldots x_n) \in E, 0 \le x_{n + 1} \le f(x_1 \ldots x_n) \} [/math]подграфик функции.


Цилиндры

Если [math] f(x_1 \ldots x_n) = c \ge 0 [/math] на [math] E [/math], то подграфик называется цилиндром в [math] \mathbb R^{n + 1} [/math].

Утверждение:
[math] G [/math] - цилиндр высоты c [math] \ge 0 [/math], измеримое [math] E \subset \mathbb R^n [/math] — основание. Тогда он измерим и при [math] c \gt 0: \lambda_{n+1} G = c \lambda_n E [/math], при [math] c = 0: \lambda_{n+1} G = 0 [/math].
[math]\triangleright[/math]

Доказательство ведем от простого к сложному, применяется критерий [math] \mu^* [/math]-измеримости.

1) Пусть [math] E [/math] — параллелепипед (ячейка), тогда [math] G [/math] тоже ячейка, формула выполняется.

2) Пусть [math] E [/math] — открытое множество. Его можно записать в форме счетного объединения дизъюнктных ячеек:

[math] E = \bigcup\limits_n \Delta_n [/math].

Пусть [math] G_n = \Delta_n \times [0, c] [/math];

[math] G = E \times [0, c] = \bigcup\limits_n G_n [/math] — тоже дизъюнктное объединение.

[math] G_n [/math] — измеримы, следовательно, [math] G [/math] — измеримо.

По сигма-аддитивности меры, [math] \lambda_{n+1} G = \sum\limits_m \lambda_{n+1} G_m = \sum\limits_m c \lambda_n \Delta_m = c \sum\limits_m \lambda_n \Delta_m = c \lambda_n E [/math].

3) [math] E [/math] — ограниченное замкнутое множество.

Возьмем некий открытый параллелепипед [math] \Delta [/math], такой, что [math] E \subset \Delta [/math].

[math] \overline E = \Delta \setminus E [/math] — открыто — можно применить пункт 2: [math] \lambda_{n+1} \overline G = c \lambda_n \overline E [/math].

[math] \lambda_{n+1} (\Delta \times [0, c]) = c \lambda_n \Delta [/math]

[math] E = \Delta \setminus \overline E, \lambda_{n+1} G = \lambda_{n+1} (\Delta \times [0, c]) - \lambda_{n+1}(\overline G) = c(\lambda_n \Delta - \lambda_n \overline E) = c \lambda_n E [/math].

4) [math] E [/math] — ограниченное и измеримое.

Для произвольного [math] \varepsilon \gt 0 [/math] подбираем [math] F_\varepsilon [/math] — замкнутое и [math] G_\varepsilon [/math] — открытое:

[math] F_\varepsilon \subset E \subset G_\varepsilon, \lambda_n G_\varepsilon - \lambda_n F_\varepsilon \lt \varepsilon [/math].

[math] F_\varepsilon \times [0, c] \subset G \subset G_\varepsilon \times [0, c] [/math].

[math] \lambda_{n + 1} (G_\varepsilon \times [0, c]) - \lambda_{n+1} (F_\varepsilon \times [0, c]) = c (\lambda_n G_\varepsilon - \lambda_n F_\varepsilon) \lt c \varepsilon [/math].

[math] \varepsilon [/math] — мало, следовательно, по критерию [math] \mu^* [/math]-измеримости, [math] G [/math] — измеримо. По монотонности меры:

[math] \lambda_{n+1} F_\varepsilon \le \lambda_{n+1} G \le \lambda_{n+1} G_\varepsilon [/math]

Также, так как [math] \lambda_n F_\varepsilon \le \lambda_n E \le \lambda_n G_\varepsilon [/math], то [math] \lambda_{n+1} F_\varepsilon \le c \lambda_{n} E \le \lambda_{n+1} G_\varepsilon [/math].

Устремляя [math] \varepsilon [/math] к нулю, в пределе приходим к [math] \lambda_{n+1} G = c \lambda_n E [/math].

5) [math] E [/math] — произвольное измеримое множество.

Из сигма-конечности меры Лебега следует, что [math] E = \bigcup\limits_{m=1}^{\infty} E_m [/math] — объединение возрастающих последовательностей ограниченных измеримых множеств.

Цилиндр [math] G = \bigcup\limits_{m=1}^{\infty} G_m [/math], где [math] G_m = E_m \times [0, c] [/math].

По уже доказанному, [math] \lambda_{n+1} G_m = c \lambda_n E_m [/math], а по свойствам меры, [math] \lambda_{n+1} G = \lim\limits_m \lambda_{n+1} G_m = c \lim\limits_m \lambda_n E_m = c \lambda_n E [/math].

6) Рассмотрим случай [math] c = 0 [/math].

Пусть [math] \lambda_n E \lt + \infty [/math], погрузим цилиндр [math] G [/math] в цилиндр [math] G' [/math] с тем же основанием, и сколь угодно малой высотой [math] c' \gt 0 [/math]. Из этого получаем, что [math] G [/math] измерим и его мера — нулевая.

В противном случае, представим E в виде счетного объединения множеств с конечной мерой. Тогда [math] G = \bigcup\limits_{m=1}^{\infty} G_m [/math], где [math] G_m [/math] — цилиндр с основанием [math] E_m [/math] и высотой 0. По доказанному, [math] \lambda_{n+1} G_m = 0[/math], а тогда и [math] \lambda_{n+1} G = 0 [/math].
[math]\triangleleft[/math]


Теорема о мере подграфика

Теорема (о мере подграфика):
Если [math] f(x) \ge 0 [/math] и измерима на множестве [math] E \in \mathbb R^n [/math], то её подграфик [math] G(f) [/math] — измерим, а [math] \lambda_{n+1}(G) = \int\limits_E f d \lambda_n [/math].
Доказательство:
[math]\triangleright[/math]

0) Базовым случаем будет тот, когда дело сводится к суммам Лебега-Дарбу.

[math] f [/math] — ограниченная функция, [math] E [/math] — измеримое множество конечной меры. [math] f [/math] — измерима, следовательно, интеграл Лебега существует: [math] \exists \int\limits_E f d \lambda_n [/math]

Рассмотрим [math] \tau: E = \bigcup\limits_{j=1}^p e_j [/math] — дизъюнктны.

[math] m_j = \inf\limits_{e_j} f(x), M_j = \sup\limits_{e_j} f(x) [/math]

[math] \underline s (\tau) = \sum\limits_{j=1}^p m_j \lambda_n e_j [/math], [math] \overline S (\tau) = \sum\limits_{j=1}^p M_j \lambda_n e_j [/math]

[math] \underline G_j = e_j \times [0, m_j] [/math], [math] \overline G_j = e_j \times [0, M_j] [/math] — цилиндры с основанием [math] e_j [/math] и высотами [math] m_j, M_j [/math].

Представим [math] \underline G[/math] как дизъюнктное объединение: [math] \underline G = \bigcup_{j=1}^p \underline G_j [/math]. Аналогично, [math] \overline G \bigcup_{j=1}^p \overline G_j [/math].

Ясно, что [math] \underline G \subset G \subset \overline G [/math].

При этом:

[math] \lambda_{n+1} \underline G(\tau) = \sum\limits_{j=1}^p \lambda_{n+1} \underline G_j = \sum\limits_{j=1}^p m_j \lambda_n e_j = \underline S(\tau) [/math]

[math] \lambda_{n+1} \overline G(\tau) = \sum\limits_{j=1}^p \lambda_{n+1} \overline G_j = \sum\limits_{j=1}^p M_j \lambda_n e_j = \overline S(\tau) [/math]

Разность [math] \lambda_{n+1} \overline G(\tau) - \lambda_{n+1} \underline G(\tau) = \overline S(\tau) - \underline S (\tau) [/math] сколь угодно мала в силу существования интеграла за счет выбора разбиения [math] \tau [/math].

По критерию [math] \mu^* [/math]-измеримости, подграфик [math] G [/math] оказывается измеримым и [math] \lambda_{n+1} \underline G(\tau) = \underline s(\tau) \le \lambda_{n+1} G(f) \le \lambda_{n+1} \overline G(\tau) = \overline S(\tau)[/math]

В этом неравенстве разбиение — любое. Между парой сумм Лебега-Дарбу можно вставить только интеграл, значит, [math] \lambda_{n+1} G(f) = \int\limits_E f d \lambda_n [/math]. Базовый случай разобран.

1) [math] \lambda_n E = + \infty [/math], [math] f [/math] — ограничена на [math] E [/math]. (По сигма-конечности меры?) Представим E как объединение возрастающей последовательности множеств [math] E_m [/math] с конечной мерой, пусть [math] G_m [/math] — подграфик сужения f на множестве [math] E_m [/math]. [math] \bigcup\limits_m G_m = G [/math] — измеримо.

[math] \lambda_{n+1} G = \lim \lambda_{n+1} G_m = \lim \int\limits_{E_m} f d \lambda_n = \int\limits_E f d \lambda_n [/math](по сигма-аддитивности интеграла).

2) Если [math] f [/math] не ограничена на [math] E [/math], то выстраиваем так называемые срезки:

[math] f_m(x) = \begin{cases} f(x), & f(x) \le m \\ m, & f(x) \gt m \end{cases} [/math]

[math] f_m(x) [/math] — измеримая, [math] f_m(x) \xrightarrow[m \to \infty]{} f(x) [/math]

[math] f_m(x) [/math] — возрастает, [math] f_m(x) \le f_{m+1} (x) [/math]

По теореме Леви, [math] \int\limits_E f_m d \lambda_n \to \int\limits_E f d \lambda_n [/math]

Пусть [math] G_m [/math] — подграфик срезки [math] f_m [/math]. Подграфики срезок образуют возрастающую последовательность и [math] G = \bigcup\limits_m G_m[/math].

Так как срезки — функция ограниченная, из первого пункта: [math] \lambda_{n+1} G_m = \int\limits_E f_m d \lambda_n \to \int\limits_E f d \lambda_n [/math]

[math] \lambda_{n+1} G = \lim\limits_m \lambda_{n+1} G_m = \int\limits_E f d \lambda_n [/math]. Формула выведена в общем случае.
[math]\triangleleft[/math]

<<>>