Метод генерации случайной перестановки, алгоритм Фишера-Йетса — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Решение)
(Обоснование)
Строка 15: Строка 15:
  
 
==Обоснование==
 
==Обоснование==
Проведем доказательство по индукции. Всего перестановок <tex> n! </tex>, поэтому вероятность каждой из них должна быть равна <tex> \frac {1}{n!}</tex>. Показажем, что на каждом <tex>i</tex>-ом шаге цикла любая перестановка из первых <tex>i</tex> элементов равновероятна.
+
Корректность данного алгоритма очевидна. На каждой итерации цикла мы выбираем случайный элемент из всех оставшихся, то есть у нас есть <tex> n</tex> способов выбрать 1 элемент, <tex> n - 1</tex> способов выбрать 2 элемент ... <tex> 1</tex> способ выбрать последний элемент. Таким образом, последовательность длины <tex> n</tex> мы можем получить <tex> $$n \times (n - 1) \times \ldots \times 1 = n! $$ </tex> способами, что совпадает с числом различных перестановок длины <tex> n</tex>. Это означает, что вероятность выбрать любую перестановку длины <tex> n</tex> равна <tex> \frac{1}{n!}</tex>, то есть все перестановки равновероятны.
* при <tex> i = 1 </tex> перестановка всего одна, и, очевидно, что база верна
 
* пусть при <tex> i = k - 1 </tex> каждая перестановка первых <tex>i</tex> элементов равновероятна, то есть вероятность каждой отдельно взятой перестановки на <tex>i</tex>-ом шаге цикла равна <tex> \frac {1}{(k-1)!}</tex>
 
: при <tex> i = k </tex>:
 
: <tex> a = \{ a_{1}, a_{2}, ..., a_{k-1}, k, ... \} </tex>
 
: после <tex>swap(i, random(1..i))</tex> вероятность какого-то числа оказаться на <tex>k</tex>-ом месте равна <tex>\frac{1}{k}</tex>. Вероятность же какой-то перестановки первых <tex>(k-1)</tex> элементов при известном <tex>a_{k}</tex> останется <tex> \frac {1}{(k-1)!}</tex>, что в результате дает, что вероятность перестановки первых <tex>k</tex> элементов равна <tex> \frac {1}{k!}</tex>
 
<br/>
 
Другой способ обоснования заключается в том, что каждая перестановка в результате работы этого алгоритма может получиться ровно одним способом, причем всегда ровно за <tex> n </tex>
 
шагов, таким образом автоматически получается, что все <tex> n!</tex> перестановок равновероятны.<br/>
 
  
 
==Неправильные способы реализации==
 
==Неправильные способы реализации==

Версия 19:33, 22 января 2016

Тасование Фишера–Йетса (названо в честь Рональда Фишера (Ronald Fisher) и Франка Йетса (Frank Yates)) – алгоритм создания случайных перестановок конечного множества, попросту говоря, для случайного тасования множества. Основная процедура тасования Фишера–Йетса аналогична случайному вытаскиванию записок с числами из шляпы или карт из колоды, один элемент за другим, пока элементы не кончатся. Алгоритм обеспечивает эффективный и строгий метод таких операций, гарантирующий несмещённый результат.

Постановка задачи

Необходимо сгенерировать случайную перестановку из [math] n [/math] чисел с равномерным распределением вероятности, если есть в наличии функция для генерации случайного числа в заданном интервале.

Решение

Пусть

  • [math]\mathtt{random(1..i) }[/math] генерирует случайное число в интервале [math] [1;\; i] [/math]

Следующий алгоритм решает задачу:

 int *a randomPermutation(int *a) // *a - указатель на массив типа int длины n
   for i = n  to 1
     j = random(1..i)
     swap(a[i], a[j])
 return a

Обоснование

Корректность данного алгоритма очевидна. На каждой итерации цикла мы выбираем случайный элемент из всех оставшихся, то есть у нас есть [math] n[/math] способов выбрать 1 элемент, [math] n - 1[/math] способов выбрать 2 элемент ... [math] 1[/math] способ выбрать последний элемент. Таким образом, последовательность длины [math] n[/math] мы можем получить [math] $$n \times (n - 1) \times \ldots \times 1 = n! $$ [/math] способами, что совпадает с числом различных перестановок длины [math] n[/math]. Это означает, что вероятность выбрать любую перестановку длины [math] n[/math] равна [math] \frac{1}{n!}[/math], то есть все перестановки равновероятны.

Неправильные способы реализации

Небольшая модификация этого алгоритма, может резко сказаться на его корректности. Например, следующие два алгоритма работают неправильно:

 for i = 1 to n
   swap(i, random(1..n))
 for i = 1 to n
   swap(random(1..n), random(1..n))

В самом деле: число способов сгенерировать последовательность в первом случае равно [math]n^n[/math], в то время как существует всего [math] n![/math] возможных перестановок из [math] n[/math] элементов. Поскольку [math] n^n[/math] никогда не может делиться на [math] n![/math] без остатка при [math] n \gt 2[/math] (так как [math] n![/math] делится на число [math] n - 1[/math] , которое не имеет с [math] n[/math] общих простых делителей), то некоторые перестановки должны появляться чаще, чем другие. Аналогично для второго случая, где число способов сгенерировать последовательность равно уже [math] (n^2)^n[/math].

Примечание

  • Впервые этот алгоритм опубликовали Р.А.Фишер и Ф.Йетс (R.A.Fisher and F. Yates, Statistical Tables (London 1938), Example 12).
  • Нетрудно увидеть, что сложность алгоритма [math] O(n)[/math]

См.также

Источники информации