Метрическое пространство — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 10: Строка 10:
 
# <tex> \rho (x, y) \le \rho (x, z) + \rho (z, y) </tex> - неравенство треугольника
 
# <tex> \rho (x, y) \le \rho (x, z) + \rho (z, y) </tex> - неравенство треугольника
 
}}
 
}}
Пара (<tex> X, \rho</tex>) является '''метрическим пространством''' (при соблюдении аксиом 1-3)
+
Пара (<tex> X, \rho</tex>) является '''метрическим пространством(МП)''' (при соблюдении аксиом 1-3)
  
 
Примеры:
 
Примеры:
Строка 46: Строка 46:
 
: <tex> r = min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара  
 
: <tex> r = min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара  
 
}}
 
}}
 +
 +
{{Определение
 +
|definition=
 +
<tex> G \in X </tex> явяется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в обзем случае объединение может состоять из несчетного числа шаров).
 +
: <tex> \tau </tex> - класс открытых множеств.
 +
: <tex> \tau </tex> = { G - открытые в МП<tex>(X, \rho)</tex> }
 +
}}
 +
 +
Свойства открытых множеств:
 +
# <tex> X = \varnothing \in \tau </tex> - пустое множество открыто
 +
# <tex> G_{\alpha} \in \tau, \alpha \in A \Rightarrow \bigcup\limits_{\alpha \in A} </tex> - очевидно
 +
# <tex> G_1 \dots G_n \int \tau \Righarrow
 +
 +
 
{{В разработке}}
 
{{В разработке}}
 +
 +
[[Категория:Математический анализ 1 курс]]

Версия 08:02, 20 ноября 2010

Пусть X - абстрактное множество.

[math] X \times X = \{ (x_1, x_2): x_i \in X \} [/math] - является прямым произведением множества X на себя


Определение:
[math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] является метрикой на X, если выполнимы аксиомы
  1. [math] \rho (x, y) \ge 0 ; \rho (x, y) = 0 \Leftrightarrow x = y [/math]
  2. [math] \rho (x, y) = \rho (y, x) [/math]
  3. [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] - неравенство треугольника

Пара ([math] X, \rho[/math]) является метрическим пространством(МП) (при соблюдении аксиом 1-3)

Примеры:

Числовая ось: [math] x, y \in \mathbb{R} \Rightarrow \rho (x, y) = |x - y| [/math]

[math] R^n = \underbrace{R \times R \times \dots \times R}_{n} ; \overrightarrow{x} = (x_1, \dots, x_n) [/math]

  1. [math] \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| [/math]
  2. [math] \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| [/math]

То есть, одно и то же множество можно по-разному превращать в метрическое пространство. Для метрических пространств основное значение имеет множество, являющееся открытым шаром([math] V_r [/math]).


Определение:
Пусть [math] (X, \rho) [/math] - метрическое пространство, [math] r \gt 0, a \in X [/math], тогда [math] V_r(a) = \{x: \rho(x, a) \lt r \} [/math]


[math] X = R: V_r(a) = (a - r; a + r) [/math]

Теорема (Свойство шаров):
Пусть [math] b \in V_{r1}(a_1) \cap V_{r2}(a_2)[/math]. Тогда [math] \exists r \gt 0: V_r(b) \in V_{r1}(a_1) \cap V_{r2}(a_2)[/math]
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, принадлежащий их пересечению(вроде так?).
Доказательство:
[math]\triangleright[/math]

Замечание - для X = R - очевидно(перечечение двух интервалов тоже есть интервал).

Пусть [math] y \in V_{r}(b)[/math]
[math] \rho (b, a_j) \lt r_j, j = 1,2 [/math]
[math] \exists r \gt 0: \rho (y, b) \lt r \Rightarrow \rho (y, a_j) \lt r_j, j = 1,2.[/math]
  1. [math] \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) \lt r_1 \Rightarrow \rho (y, b) \lt r_1 - \rho(b, a_1) = d_1, d_1 \gt 0 [/math]
  2. [math] \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) \lt r_2 \Rightarrow \rho (y, b) \lt r_2 - \rho(b, a_2) = d_2, d_2 \gt 0 [/math]
[math] r = min(d_1, d_2) \Rightarrow \rho(y, b) \lt r \Rightarrow y[/math] войдет в оба шара
[math]\triangleleft[/math]


Определение:
[math] G \in X [/math] явяется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в обзем случае объединение может состоять из несчетного числа шаров).
[math] \tau [/math] - класс открытых множеств.
[math] \tau [/math] = { G - открытые в МП[math](X, \rho)[/math] }


Свойства открытых множеств:

  1. [math] X = \varnothing \in \tau [/math] - пустое множество открыто
  2. [math] G_{\alpha} \in \tau, \alpha \in A \Rightarrow \bigcup\limits_{\alpha \in A} [/math] - очевидно
  3. <tex> G_1 \dots G_n \int \tau \Righarrow


Эта статья находится в разработке!