Механизм внимания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 22: Строка 22:
 
<math>СV = \sum_{i=1}^m e_i h_i</math>
 
<math>СV = \sum_{i=1}^m e_i h_i</math>
  
Результатом работы слоя внимания является <math>CV</math> который, содержит в себе информацию обо всех скрытых состоянях <math>h_i</math> пропорционально оценке <math>e_i</math>.
+
Результатом работы слоя внимания является <math>c</math> который, содержит в себе информацию обо всех скрытых состоянях <math>h_i</math> пропорционально оценке <math>e_i</math>.
  
 
== Пример использования для архитектуры ''Seq2Seq'' ==
 
== Пример использования для архитектуры ''Seq2Seq'' ==
Строка 65: Строка 65:
 
''Аггрегатор скрытых состояний энкодера (желтый)'' {{---}} аггрегирует в себе все вектора <math>h_i</math> и возвращает всю последовательность векторов <math>h = [h_1, h_2, h_3, h_4]</math>.
 
''Аггрегатор скрытых состояний энкодера (желтый)'' {{---}} аггрегирует в себе все вектора <math>h_i</math> и возвращает всю последовательность векторов <math>h = [h_1, h_2, h_3, h_4]</math>.
  
<math>СV_i</math> {{---}} вектор контекста на итерации <math>i</math>.
+
<math>c_i</math> {{---}} вектор контекста на итерации <math>i</math>.
  
''Блоки механизма внимания (красный)'' {{---}} механизм внимания. Принимает <math>h</math> и <math>d_{i - 1}</math>, возвращает <math>СV_i</math>.
+
''Блоки механизма внимания (красный)'' {{---}} механизм внимания. Принимает <math>h</math> и <math>d_{i - 1}</math>, возвращает <math>c_i</math>.
  
''Блоки декодера (фиолетовый)'' {{---}} по сравнению с обычной ''Seq2Seq'' сетью меняются входные данные. Теперь на итерации <math>i</math> на вход подается не <math>y_{i-1}</math>, а конкатенация <math>y_{i-1}</math> и <math>CV_i</math>.
+
''Блоки декодера (фиолетовый)'' {{---}} по сравнению с обычной ''Seq2Seq'' сетью меняются входные данные. Теперь на итерации <math>i</math> на вход подается не <math>y_{i-1}</math>, а конкатенация <math>y_{i-1}</math> и <math>c_i</math>.
  
 
Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке ''A'' необходимо обратить больше внимания при переводе данного слова на язык ''B''.
 
Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке ''A'' необходимо обратить больше внимания при переводе данного слова на язык ''B''.

Версия 23:06, 21 марта 2020

Механизм внимания в рекуррентных нейронных сетях (англ. attention mechanism, attention model) — дополнительный слой используемый в рекуррентных нейронных сетях для "обращения внимания" последующих слоев сети на скрытое состояние нейронной сети [math]h_t[/math] в момент времени [math]t[/math].

Изначально механизм внимания был представлен в статье Machine Translation by Jointly Learning to Align and Translate и предполагал применение именно в Seq2Seq сетях, и лишь позже был использован применительно к изображениям Attend and Tell: Neural Image Caption Generation with Visual Attention.

Обобщенное описание

Обобщенное описание механизма внимания

Рекуррентные нейронные сети используются при обработке данных, для которых важна их последовательность. В классическом случае применения RNN результатом является только последнее скрытое состояние [math]h_m[/math], где [math]m[/math] — длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния [math]h_t[/math] для любого [math]t[/math].

Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются [math]h_t, t = 1 \ \ldots m[/math], а также вектор [math]d[/math] в котором содержится некий контекст зависящий от конкретно задачи (пример [math]d[/math] для задачи машинного перевода использующего Seq2Seq арихитектуру).

Выходом данного слоя будет являтся вектор [math]s[/math] (англ. score) — оценки на основании которых на скрытое состояние [math]h_i[/math] будет "обращено внимание".

Далее для нормализации значений [math]s[/math] используется [math]softmax[/math]. Тогда [math]e = softmax(s)[/math]

[math]softmax[/math] здесь используется благодоря своим свойствам:

  • [math]\forall s:\ \sum_{i=1}^n softmax(s)_i = 1, [/math]
  • [math]\forall s,\ i: \ softmax(s)_i \gt = 0 [/math]

Далее считается [math]СV[/math] (англ. context vector)

[math]СV = \sum_{i=1}^m e_i h_i[/math]

Результатом работы слоя внимания является [math]c[/math] который, содержит в себе информацию обо всех скрытых состоянях [math]h_i[/math] пропорционально оценке [math]e_i[/math].

Пример использования для архитектуры Seq2Seq

Из-за интуитивной понятности механизма внимания для проблемы машинного перевода, а также поскольку в оригинальной статье рассматривается механизм внимания применительно именно к Seq2Seq сетям. Пример добавления механизма внимания в Seq2Seq сеть поможет лучше понять его предназначение.

Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье.

Базовая архитектура Seq2Seq

Пример работы базовой Seq2Seq сети

Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2Seq.

Seq2Seq состоит из двух RNNEncoder и Decoder.

Encoder — принимает предложение на языке A и сжимает его в вектор скрытого состояния.

Decoder — выдает слово на языке B, принимает последнее скрытое состояние энкодера и предыдущее предыдущее предсказаное слово.


Рассмотрим пример работы Seq2Seq сети:

[math]x_i[/math] — слова в предложении на языке A.

[math]h_i[/math] — скрытое состояние энкодера.

Блоки энкодера (зеленый) — блоки энкодера получающие на вход [math]x_i[/math] и передающие скрытое состояние [math]h_i[/math] на следующую итерацию.

[math]d_i[/math] — скрытое состояние декодера.

[math]y_i[/math] — слова в предложении на языке B.

Блоки декодера (фиолетовый) — блоки декодера получающие на вход [math]y_{i-1}[/math] или специальный токен start в случае первой итерации и возвращаюшие [math]y_i[/math] — слова в предложении на языке B. Передают [math]d_i[/math] — скрытое состояние декодера на следующую итерацию. Перевод считается завершенным при [math]y_i[/math], равном специальному токену end.

Применение механизма внимания для Seq2Seq

При добавлении механизма в данную архитектуру между RNN Encoder и Decoder слоя механизма внимания получится следуюшая схема:

Пример работы Seq2Seq сети с механизмом внимания

Здесь [math]x_i, h_i, d_i, y_i[/math] имееют те же назначения, что и в варианте без механизма внимания.

Аггрегатор скрытых состояний энкодера (желтый) — аггрегирует в себе все вектора [math]h_i[/math] и возвращает всю последовательность векторов [math]h = [h_1, h_2, h_3, h_4][/math].

[math]c_i[/math] — вектор контекста на итерации [math]i[/math].

Блоки механизма внимания (красный) — механизм внимания. Принимает [math]h[/math] и [math]d_{i - 1}[/math], возвращает [math]c_i[/math].

Блоки декодера (фиолетовый) — по сравнению с обычной Seq2Seq сетью меняются входные данные. Теперь на итерации [math]i[/math] на вход подается не [math]y_{i-1}[/math], а конкатенация [math]y_{i-1}[/math] и [math]c_i[/math].

Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке A необходимо обратить больше внимания при переводе данного слова на язык B.

См. также

Источники

Примечания