Минимальная охватывающая окружность множества точек

Материал из Викиконспекты
Версия от 10:05, 5 мая 2018; 93.175.3.165 (обсуждение) (Алгоритм)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Конспект готов к прочтению.

Описание[править]

Минимальная охватывающая окружность множества точек (smallest enclosing disc) - это задача, в которой необходимо по заданному набору точек найти окружность минимального радиуса, которая содержит все точки множества.

Алгоритм[править]

Сперва приведем алгоритм, корректность которого позднее будет доказана.

Рассмотрим метод [math] MinDisc [/math], который будет принимать на вход множество точек, а возвращать будет искомую охватывающую окружность. Идея метода в том, что он генерирует случайную перестановку из точек, которые поступили на вход и в получившимся порядке по одной добавляет их в текущую охватывающую окружность. Как будет доказано позднее, если на каком-то шаге алгоритма текущая точка оказалась вне текущей минимальной окружности, то утверждается, что она лежит на границе новой окружности, которая будет содержать в себе ее и все предыдущие точки. Опишем приведенный выше алгоритм псевдокодом:

MinDisc(S)
   Let P - random permutation of S
   Let D2 - be the smallest enclosing disc for {p1, p2}.
   for i = 3 to n {
       if pi [math] \in [/math] Di−1  then Di = Di−1 // point is inside. nothing to do here
                     else Di = MinDiscWithPoint ({p1,...,pi−1}, pi) // point is lying on the boundary of minimal circle
   }
   return Dn

Как вы заметили, мы использовали выше метод [math] MinDiscWithPoint [/math] - это метод, который по множеству точек и еще одной точке возвращают искомую окружность. При этом выделенная точка (которая передается в качестве второго аргумента) обязательно лежит на окружности. Эта функция очень похожа на предыдущую, поэтому приведу лишь ее псевдокод:

MinDiscWithPoint(S, q)
   Let P - random permutation of S
   Let D1 - be the smallest enclosing disc for {p1, q}.
   for i = 2 to n {
       if pi [math] \in [/math] Di−1  then Di = Di−1 
                     else Di = MinDiscWith2Points ({p1,...,pi−1}, pi, q) 
   }
   return Dn

Как и в предыдущем случае мы использовали новый метод. [math] MinDiscWith2Points [/math] аналогичен [math] MinDiscWithPoint [/math], но в нем уже передается две точки, которые будут лежать на построенной окружности. В этой функции шафлить инпут не требуется. Опишем его псевдоком:

MinDiscWith2Points(P, q1, q2)
   Let D0 - be the smallest enclosing disc for {q1, q2}.
   for i = 1 to n {
       if pi [math] \in [/math] Di−1  then Di = Di−1 
                     else Di = сircumcircle (прим. описанная окружность) of a triangle {pi, q1, q2} 
   }
   return Dn

Как мы видим больше подобных шагов делать не нужно, так как если известно, что три точки лежат на некоторой окружности, то они однозначно ее задают.

Корректность алгоритма[править]

Попробуем разобраться почему этот алгоритм действительно находит искомую окружность.

Докажем несколько вспомогательных лемм. Для удобства введем общие обозначения. Пусть [math] P [/math] и [math] R [/math] - два непересекающихся множества точек на плоскоти, Пусть [math] p [/math] - некоторая точка из множества [math] P [/math].

Лемма (лемма 1):
Окружность минимального радиуса, содержащая все точки [math] P [/math] внутри себя и все точки [math] R [/math] на границе, уникальна.
Доказательство:
[math]\triangleright[/math]
MiniDisc.png

Пусть это не так и существует две такие окружности [math] D_0 [/math] и [math] D_1 [/math]. Очевидно, что в таком случае все точки из [math] P [/math] должны лежать внутри [math] D_0 \cap D_1 [/math]. Пусть [math] z [/math] - точка пересечения окружностей (смотри рисунок). Рассмотрим некоторое семейство окружностей [math] D(\lambda), 0\lt =\lambda \lt = 1 [/math]. При этом центры этих окружностей лежат на отрезке, соединяющем центры [math] D_0 [/math] и [math] D_1 [/math], и перемещаются очевидным образом в зависимости от параметра [math]\lambda [/math]. При этом радиус каждой из этих окружностей - расстояние от центра до точки [math] z [/math], описанной выше. Рассмотрим окружность [math] D(1/2) [/math]. Заметим, что [math] D_0 \cap D_1 [/math] лежит целиком внутри нее (по построению окружности [math] D(1/2) [/math]), а так как [math] D(1/2) [/math] проходит через пересечение окружностей [math] D_0 [/math] и [math] D_1 [/math], то она проходит через все точки [math] R [/math] (так все точки [math] R [/math] лежат на [math] \partial D_0 \cap \partial D_1 [/math].). Из этого следует, что эта окружность явлется допустимой для нашей теоремы и при этом обладает меньшим радиусом, то наше предположение неверно и искомая окружность единственная.


Далее будем называть искомую окружность [math] md(P, R) [/math].
[math]\triangleleft[/math]
Лемма (лемма 2):
Если [math] p \in md(P \setminus \{p\}, R) [/math], то [math] md(P, R) = md(P \setminus \{p\}, R) [/math]
Доказательство:
[math]\triangleright[/math]
Для множества [math] P \setminus \{p\} [/math] справедливо, что для него минимальный диск по определению - это [math] md(P \setminus \{p\}, R) [/math], но так как [math] p [/math] лежит внутри него, то он и является корректным диском для множества [math] P [/math]. Но если бы в [math] P [/math] существовал еще меньший диск, то он бы существовал бы и для [math] P \setminus \{p\} [/math]. Значит эти диски равны(в силу единственности) и [math] md(P, R) = md(P \setminus \{p\}, R) [/math]
[math]\triangleleft[/math]
Лемма (лемма 3):
Если [math] p \notin md(P \setminus \{p\}, R) [/math], то [math] md(P, R) = md(P \setminus \{p\}, R \cup {p}) [/math]
Доказательство:
[math]\triangleright[/math]
Пусть [math] D_0 = md(P \setminus \{p\}, R) [/math] и [math] D_1 = md(P, R) [/math]. Рассмотрим аналогичное семейство множеств [math] D(\lambda) [/math] как в лемме 1. Зададим это семейство с помощью окружностей [math] D_0 [/math] и [math] D_1 [/math]. Заметим, что [math] p \notin D_0 [/math], но [math] p \in D_1 [/math]. Значит найдется такое [math] \lambda [/math], что точка [math] p [/math] лежит на границе окружности [math] D(\lambda) [/math]. Но в таком случае так как эта окружность удовлетворяет условиям теоремы и к тому же обладает не большим радиусом, чем [math] D_1 [/math] (которая в свою очередь является минимальной охватыающей окружностью), то [math] \lambda = 1 [/math]. Это означает, что [math] D(\lambda) = D_1 [/math], то точка [math] p [/math] лежит на границе [math] D_1 [/math], то [math] md(P, R) = md(P \setminus \{p\}, R \cup {p}) [/math].
[math]\triangleleft[/math]

Эти три доказанные леммы полностью подтверждают корректность наших действий в приведенном выше алгоритме, ведь во всех трех методах в условном операторе мы используем леммы 2 и 3, корректность которых доказана. Другими словами, алгоритм действительно найдет искомую минимальную охватывающую окружность множества точек.

Память и время работы[править]

Сначала разберемся с памятью. Тут все просто - никаких лишних затрат, кроме как на хранение точек нам требуется, то алгоритм требует [math] O(n) [/math] памяти.

С временем работы дела обстоят интереснее. На самом деле приведенный алгоритм работает за линейное время. Докажем этот факт.

Рассмотрим некоторое множество [math] P = \{p_1, ... p_i \} [/math] и точку [math] q [/math], которая лежит на границе построенной охватывающей окружности. Тогда попробуем удалить одну точку из набора [math] P [/math]. Искомая окружность может измениться только в том случае, когда эта удаленная точка лежала на границе, а вероятность этого [math] 2 / i [/math] (так как точек, которые образуют нашу окружность не более трех. при этом одна из этих трех точек - [math] q [/math]).

То оценим время работы MinDiscWithPoint c помощью доказанного выше факта. На каждой итерации цикла будет происходить проверка, которая пройдет в "else" с вероятностью [math] 2 / i [/math]. А сложность работы каждого "else" - [math] O(i) [/math]. То суммарное время работы MinDiscWithPoint вычисляется следующим образом:

[math] O(n) + \sum_{i=1}^{n} O(i) * (2 / i ) = O(n) [/math].

Абсолютно аналогичным образом доказываем, что время работы [math] MinDisc [/math] есть [math] O(n) [/math]. То есть рассматриваемый алгоритм имеет линейную сложность.

Источники[править]

Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars-Computational Geometry Algorithms and Applications, p. 86