Изменения

Перейти к: навигация, поиск

Многомерное дерево отрезков

9496 байт добавлено, 19:39, 4 сентября 2022
м
rollbackEdits.php mass rollback
[[Дерево отрезков. Построение|Дерево отрезков]] естественным образом обобщается на двумерный и , вообще говоря , многомерный случай. Такая структура данных может вычислять значение некоторой [[Ассоциативная_операция|ассоциативной функции]] на гиперпрямоугольнике за . Например, она позволяет решать следующую задачу.{{Задача|definition = Дан <tex>O(\log^{p} </tex>-мерный массив, где индекс каждого измерения массива может принимать значения от <tex>1</tex> до <tex>n)</tex>. Необходимо уметь изменять значение элемента массива, где а также находить сумму на <tex>p</tex> {{---мерной области. }} размерность пространства, а Каждую из этих операций многомерное дерево отрезков выполняет за <tex>O(\log^{p} n)</tex> {{---}} ширина гиперкуба на котором производятся вычисления.
==Структура==<tex>n</tex>-мерное дерево отрезков {{---}} обычное дерево отрезковК примерам задач, элементами которого являются деревья решаемых с помощью многомерного дерева отрезков размерности на 1 меньше. Основная идея заключается в рекурсивном переходе к деревьям меньшей размерности. Рассмотрим работу этого принципа на следующем примере. Пусть задано <tex>p</tex>-мерное пространство с координатными осями <tex>x_1, x_2также можно отнести задачи, x_3которые решаются с помощью одномерного [[Дерево отрезков...x_p</tex>. Необходимо вычислять некоторую ассоциативную функцию на гиперпрямоугольнике. Для этого сначала найдем элементы Построение|дереваотрезков]], соответствующие <tex>x_1</tex> координате. Для каждого из этих элементов рекурсивно перейдем в соответствующие им деревья отрезков и только теперь в них найдем элементымногомерном случае, отвечающие соответствующим координатам <tex>x_2</tex> исходной гиперпрямоугольной областиа еще , и т. д. Таким образомнапример, алгоритм совершит <tex>p</tex> вхождений задачу поиска числа точек в рекурсиюзаданном прямоугольнике, каждая итерация которой работает которую иначе можно решать при помощи [[Перечисление точек в произвольном прямоугольнике за <tex>On * log ^(\log d - 1) n(range tree)</tex> |range tree]], и получим необходимую асимптотикудругие.
==Двумерное дерево отрезковПринцип работы==Рассмотрим следующую задачу[[Файл:SegmentTreeWorking.png|thumb|600px|right|Пример некоторой стадии работы алгоритма (поиск элементов, подходящих некоторой области)]]<tex>n</tex>-мерное дерево отрезков {{Задача|definition=Дано поле размером ---}} обычное дерево отрезков, элементами которого являются деревья отрезков размерности на единицу меньше. Основная идея заключается в рекурсивном переходе к деревьям меньшей размерности. Рассмотрим работу этого принципа на следующем примере. Пусть задано <tex>p</tex>-мерное пространство с координатными осями <tex>N x_1, x_2, x_3 \times Mldots x_p</tex>, заполненное некоторыми числами. Необходимо уметь обрабатывать два типа запросов: * Изменить некоторый элемент* Посчитать найти значение некоторой ассоциативной функции на гиперпрямоугольнике. Функция, вычисляющая ответ, должна работать следующим образом. На вход она принимает <tex>\timesi</tex> на прямоугольной -мерное дерево отрезков, которое соответствует рассматриваемой области(где <tex>i</tex> {{---}} количество координатных осей, которые не были рассмотрены), а также <tex>i</tex>-мерную область, для которой следует вычислить функцию. Вначале она находит <tex>i-1</tex>-мерные деревья отрезков, которые соответствуют отрезку по <tex>p-i+1</tex> координате, и рекурсивно запускается от них (если текущее дерево одномерное, то функция просто возвращает ответ из соответствующего листа). После этого считает итоговый результат, используя полученные после рекурсивных вызовов значения. Для того, чтобы определить, от каких именно деревьев отрезков следует запускаться рекурсивно, действовать необходимо так же, как и в одномерном случае. Т. е. если текущий отрезок не пересекается с необходимым, то возвращаем нейтральный элемент, если он полностью лежит в необходимом отрезке, то рекурсивно переходим к следующей координате, иначе разобьем текущий отрезок пополам, и рассмотри отдельно каждую из частей.  На рисунке справа показан пример обработки очередной координаты (поиск соответствующих отрезку элементов {{---}}деревьев на <tex>1</tex> меньшей мерности). Таким образом, алгоритм совершит <tex>p</tex> вхождений в рекурсию, каждая итерация которой работает за <tex>O(\log n)</tex> и получим необходимую асимптотику.
==Хранение==
[[Файл:SegmentTree2DExample.png|thumb|250px350px|right|Пример двумерного дерева отрезков для 16 элементов]]Двумерное Пусть необходимо хранить дерево отрезков для <tex>p</tex>-мерной области, размеры которой <tex>n_1 \times n_2 \times \ldots \times n_p</tex>. Удобнее всего это делать с помощью <tex>p</tex>-мерного массива. Однако его размеры по каждой координате, так же как и в одномерном случае, должны превышать размеры соответствующего отрезка в 4 раза. На самом деле нам нужно хранить <tex>2n</tex> чисел, но, если мы хотим, чтобы правый и левый сын некоторой вершины <tex>i</tex> находились на <tex> 2i + 1</tex> и <tex>2i + 2</tex> месте, то, если длина отрезка не является степенью двойки, некоторые элементы массива могут быть не задействованы, поэтому в худшем случае, может понадобиться массив, размер которого в 4 раза превышает количество элементов. Т. е. потребуется массив размером <tex>4 n_1 \times 4 n_2 \times \ldots \times 4 n_p</tex>. Так двумерное дерево отрезков удобно хранить в виде массива, размером <tex>4N \times 4M</tex>. Каждая строчка такого массива соответствует некоторому отрезку по первой координате. Сама же строчка является деревом отрезков по второй координате.
На рисунке справа показан пример дерева отрезков для суммы на массиве 4 на 4, заполненного числами от 1 от 16. Например, в элементе <tex>a[2][0] = 100</tex> хранится сумма элементов, соответствующих отрезку <tex>[2..3]</tex> по первой координате и <tex>[0..3]</tex> по второй в исходном массиве. А в ячейке <tex>a[0][0] = 136</tex> хранится сумма всех элементов.
Заметим, что в общем случае для хранения <tex>p</tex>-мерного дерева отрезков требуется <tex>4^p n</tex> памяти, где <tex>n</tex> {{---}} общее количество элементов.
==Псевдокод для двумерного случаяЗапрос==Построение: // first call - buildX(0, 0, n, aРассмотрим отличия реализации многомерного и одномерного случаев. На самом деле, t) // a отличаются реализации только в двух местах. Во- исходный массив // t - массив дерева отрезков // [leftXпервых, rightX) - полуинтервал buildX(vertexXесли рассматриваемый отрезок совпадает с необходимым, leftXто в одномерном случае функция просто возвращает число, rightXкоторое находится в текущем элементе массива. В многомерном случае, a[][]если рассматриваемая координата не последняя, t[][]) if leftX != rightX mx = (leftX + rightX + 1) / 2 buildX(vertexX * 2 + 1, leftXследует вместо этого узнать значение, mxрекурсивно перейдя к следующей координате, a, t) buildX(vertexX * 2 + 2, mx, rightX, a, t) buildY(vertexX, leftX, rightX, 0, 0, m, a, t) buildY(vertexX, leftX, rightX, vertexY, leftY, rightY, a[][], t[][]) if leftY == rightY if leftX == rightX t[vertexX][vertexY] = a[leftX][leftY] else t[vertexX][vertexY] = t[vertexX * 2 + 1][vertexY] <tex>\times</tex> t[vertexX * 2 + 2][vertexY] else my = (leftY + rightY + 1) / 2 buildY(vertexX, leftX, rightX, vertexY * 2 + 1, leftY, my, a, t) buildY(vertexX, leftX, rightX, vertexY * 2 + 2, my, rightY, a, t) t[vertexX][vertexY] = t[vertexX][vertexY * 2 + 1] <tex>\times</tex> t[vertexX][vertexY * 2 + 2]и вернуть его.
Подсчет суммы элементов: // first call Еще один момент, в которых отличается реализация {{-- sumX(0, 0, n - 1, leftX, rightX, leftY, rightY, t) sumX(vertexX, leftBorderX, rightBorderX, leftX, rightX, leftY, rightY, t[][]) if leftX }} передаваемые в функцию параметры. В многомерном случае кроме всего прочего следует также передать рассматриваемое <tex> rightX return 0 if leftX == leftBorderX && rightX == rightBorderX return sumY(vertexX, 0, 0, m p- 1, leftY, rightY) tmx = (leftBorderX + rightBorderX) / 2 return sumX(vertexX * 2 i+ 1, leftBorderX, tmx, leftX, min(rightX, tmx), leftY, rightY, t) <tex>\times</tex> sumX(vertexX * 2 + 2, tmx + 1, rightBorderX, max-мерное дерево (leftXили кортеж из чисел, tmx + 1указывающих на соответствующие элементы массива), rightX, leftYа также область, rightY, t) sumYкоторую следует рассматривать (vertexX, vertexY, leftBorderY, rightBorderY, leftY, rightY) if leftY или <tex> rightY return 0 if leftY == leftBorderY && rightY == rightBorderY return t[vertexX][vertexY] tmy = (leftBorderY + rightBorderY) / 2 return sumY(vertexX, vertexY * 2 p-i+ 1, leftBorderY, tmy, leftY, min(rightY, tmy), t) <tex>\times</tex> sumY(vertexX, vertexY * 2 + 2, tmy + 1, rightBorderY, max(leftY, tmy + 1), rightYпар чисел, tобозначающих отрезки на соответствующих координатных осях). Все остальные детали реализации остаются такими же как и в одномерном дереве отрезков.
Обновление элементаВ каждом нижеприведенном псевдокоде будут встречены обозначения: // first call - updateX(0, 0, n - 1, x, y, val, t) updateX(vertexX, leftX, rightX, x, y, val, t[][]) if leftX != rightX mx = (leftX + rightX) / 2 if x <= mx updateX(vertexX * 2 + 1, leftX, mx, x, y, val, t) else updateX(vertexX * 2 + 2, mx + 1, rightX, x, y, val, t) updateY(vertexX, leftX, rightX, 0, 0, m - 1, x, y, val, t) updateY(vertexX, leftX, rightX, vertexY, leftY, rightY, x, y, val, t[][]) if leftY == rightY if leftX == rightX t[vertexX][vertexY] = val else t[vertexX][vertexY] = t[vertexX * 2 + 1][vertexY] индекс <tex>\timesmathtt{P}</tex> t[vertexX * 2 + 2][vertexY] else my = (leftY + rightY) / 2 if y <= my updateY(vertexX, leftX, rightX, vertexY * 2 + 1, leftY, my, x, y, val, t) else updateY(vertexX, leftX, rightX, vertexY * 2 + 2, my + 1{{---}} размерность массива из условия задачи, rightY, x, y, val, t) t[vertexX][vertexY] = t[vertexX][vertexY * 2 + 1] <tex>\timesmathtt{\odot}</tex> t[vertexX][vertexY * 2 + 2] {{---}} та операция, которую мы считаем на данном многомерном дереве отрезков.
В нижеприведенном псевдокоде будет встречен <tex>\varepsilon</tex> {{---}} нейтральный элемент.
 Псевдокод:<code> '''void''' query('''int''' area[], '''int''' x1, '''int''' x2, ..., '''int''' xP, '''int''' leftBorder, '''int''' rightBorder, '''int''' queryLeft, '''int''' queryRight, '''int''' node) '''if''' queryLeft > queryRight '''return''' <tex>\varepsilon</tex> '''if''' leftBorder ==ИсточникиqueryLeft '''and''' rightBorder ==queryRight '''if''' последняя координата '''return''' t[x1][x2]...[xP][node] '''else''' '''return''' query(area[], x1, x2, ..., xP, node, 0, m - 1, area[P + 2].left, area[P + 2].right, 0) med = (leftBorder + rightBorder) / 2 '''return''' query(area[], x1, x2, ..., xP, leftBorder, med, queryLeft, min(queryRight, med), node * 2 + 1) <tex>\odot</tex> query(area[http], x1, x2, ..., xP, med + 1, rightBorder, max(queryLeft, med + 1), queryRight, node * 2 + 2)</code> ==Обновление==Как и в одномерном случае, обновить в массиве необходимо не один элемент, а все, которые отвечают за области, в которых он присутствует. Таким образом, при обработке отрезка по некоторой координате (если она не последняя) следует выполнить следующие действия:* Если рассматриваемый отрезок содержит больше одного элемента, разобьем его на две части и рекурсивно перейдем в ту, где находится необходимый элемент* Перейдем к следующей координатеЗаметим, что "переходов к следующей координаты" при рассмотрении некоторой координатной оси будет совершено <tex>\log n</tex>, а итоговая сложность составит <tex>O(\log^{p} n)</e-maxxtex>. Отдельно следует рассмотреть, что происходит, когда текущее дерево является одномерным (мы рассмотрели все координаты, кроме текущей):* Если рассматриваемый отрезок содержит больше одного элемента, разобьем его на две части и рекурсивно перейдем в ту, где находится необходимый элемент* Найдем первую координату, в которой рассматривается больше одного элемента. Обновим значение элемента массива с помощью уже вычисленных значений для разбитого надвое отрезка по этой координате.* Если мы рассматриваем область, состоящую из одного элемента, обновим значение массива. Псевдокод:<code> '''void''' update('''int''' newElem, '''int''' x1, '''int''' x2, ..., '''int''' xP, '''int''' x1Left, '''int''' x1Right, '''int''' x2Left, '''int''' x2Right, ...ru, '''int''' xPLeft, '''int''' xPRight, '''int''' leftBorder, '''int''' rightBorder, '''int''' node) '''if''' leftBorder != rightBorder med = (leftBorder + rightBorder) /algo2 '''if''' med >= newElem.x(P+1) update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, leftBorder, med, node * 2 + 1) '''else''' update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, med + 1, rightBorder, node * 2 + 2) '''if''' последняя координата '''for''' I = 1..n '''if''' xILeft != xIRigth t[x1][x2]...[xP][node] = t[x1][x2]...[xI * 2 + 1]...[node] <tex>\odot</segment_tree Дерево tex> t[x1][x2]...[xI * 2 + 2]...[node] '''return''' t[x1][x2]...[xP][node] = newElem.value '''else''' '''if''' leftBorder != rightBorder update(newElem, x1, x2, ..., xP, node, x1Left, x1Rigth, x2Left, x2Right, ..., leftBorder, rightBorder, 0, m - 1, 0)</code> ==Построение==Построение многомерного дерева отрезков практически ничем не отличается от его обновления. Единственное различие {{---}} e-maxxесли рассматриваемый отрезок состоит из более чем одного элемента, то необходимо рекурсивно вызываться из обеих частей. Псевдокод:<code> '''void''' build('''int''' x1, '''int''' x2, ..., '''int''' xP, '''int''' x1Left, '''int''' x1Right, '''int''' x2Left, '''int''' x2Right, ..., '''int''' xPLeft, '''int''' xPRight, '''int''' leftBorder, '''int''' rightBorder, '''int''' node) '''if''' leftBorder != rightBorder med = (leftBorder + rightBorder) / 2 update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, leftBorder, med, node * 2 + 1) update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, med + 1, rightBorder, node * 2 + 2) '''if''' последняя координата '''for''' I = 1..n '''if''' xILeft != xIRight t[x1][x2]...ru[xP][node] = t[x1][x2]...[xI * 2 + 1]...[http:node] <tex>\odot<//habrahabrtex> t[x1][x2]...[xI * 2 + 2]...[node] '''return''' t[x1][x2]...[xP][node] = data[x1Left][x2Left]...[xPLeft][node] '''else''' '''if''' leftBorder != rightBorder update(newElem, x1, x2, ..., xP, node, x1Left, x1Rigth, x2Left, x2Right, ...ru, leftBorder, rightBorder, 0, m - 1, 0)</postcode> Заметим, что построение дерева требует <tex>O(n)</131072tex> времени, где <tex>n</)/ Двумерное дерево отрезков tex> {{---}} habrahabrобщее число элементов в массиве.ru]
==См. также==
*[[Сжатое многомерное дерево отрезков]]
*[[Многомерное дерево Фенвика]]
 
==Источники информации==
* [http://e-maxx.ru/algo/segment_tree MAXimal :: algo :: Дерево отрезков]
* [http://habrahabr.ru/post/131072/)/ Habrahabr {{---}} Двумерное дерево отрезков]
 
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Дерево отрезков]]
[[Категория: Модификации структур данных]]
1632
правки

Навигация