Многопоточность в машинном обучении

Материал из Викиконспекты
Версия от 21:07, 22 апреля 2020; AccountAll (обсуждение | вклад) (Добавил пример для OpenCL)
Перейти к: навигация, поиск

Следует выделить следующие виды параллелизма:

  • Параллелизм на уровне инструкций (ILP): запускать несколько инструкций одновременно.
  • Параллелизм одна инструкция множество данных(SIMD): одна инструкция работает с вектором чисел
  • Многопоточный параллелизм: несколько независимых рабочих потоков взаимодействуют через абстракцию совместно используемой памяти.
  • Распределенные вычисления: несколько независимых рабочих компьютеров взаимодействуют по сети. (MLlib на Spark, Mahout на Hadoop)

Идеи используемые для ускорения вычислений в ML

Параллелизм для ускорения линейной алгебры.

Мы можем значительно повысить производительность, создав ядра линейной алгебры (например, умножение матриц, векторное сложение и т.д.), которые используют параллелизм для ускорения работы. Поскольку умножение матриц занимает большую часть времени обучения нейронных сетей, это может привести к значительному сквозному ускорению обучающего конвейера. В основе этого лежит параллелизм ILP, SIMD а для больших матриц также может использоваться многопоточность.

Примеры оптимизаций:

  • Высоко оптимизированные тензорные библиотеки для арифметики.
  • Алгоритмы в терминах матричных операций, а не векторных операций, насколько это возможно.
  • Broadcast операции, а не циклы.
  • Распараллеленные реализации некоторых специальных операций (таких как свертки для CNN).

Параллелизм broadcast операций

Просмотрите код наивной реализации поэлементное произведение двух векторов на Python

 def elementwise_product(x, y):
     assert(len(x) == len(y))
     z = numpy.zeros(len(x))
     for i in range(len(x)):
         z[i] = x[i] * y[i]
     return z

Такой код лучше заменять на broadcast операции из numpy, которые выигрывают от векторизации и ILP. Также такой код может быть легко распараллелен для больших векторов

Параллелизм в оптимизации гиперпараметров

Для параллельной оптимизации гиперпараметров можно использовать поиск по решётке или случайный поиск в которых мы можем оценить параметры независимо. Такая оптимизации часто встречаются в библиотеках машинного обучения.

Параллелизм кросс-валидации

Полная кросс-валидация, k-fold, t×k-fold, Leave-One-Out легко распараллеливаются на несколько потоков, каждый из которых работает на своем разбиении данных

ParallelCrossValidation.png

Параллелизм GPU

Типичное число потоков обработки графического процессора - десятки тысяч, что позволяет вычислять одну и ту же операцию параллельно на множестве элементов.

Фреймворки машинного обучения, такие как TensorFlow, PyTorch и MxNet используют эти возможности через библиотеки от компаний производителей графических ускорителей и открытые фреймворки:

  • CUDA - язык параллельного программирования/вычислительная платформа для вычислений общего назначения на графическом процессоре
  • cuBLAS - библиотека представляет собой реализацию BLAS (базовых подпрограмм линейной алгебры) поверх среды выполнения CUDA.
  • OpenCL - фреймворк для написания компьютерных программ, связанных с параллельными вычислениями на различных графических и центральных процессорах, а также FPGA

Пример перемножения матриц на cuBLAS

 void gpu_blas_mmul(cublasHandle_t &handle, const float *A, const float *B, float *C, const int m, const int k, const int n) {
     int lda = m, ldb = k, ldc = m;
     const float alf = 1;
     const float bet = 0;
     const float *alpha = &alf;
     const float *beta = &bet;
     // Do the actual multiplication
     cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
 }

Пример перемножения матриц на PyCUDA

 import pycuda.gpuarray as gpuarray
 import numpy as np
 import skcuda.linalg as linalg
 # --- Initializations
 import pycuda.autoinit
 linalg.init()
  
 A = np.array(([1, 2, 3], [4, 5, 6])).astype(np.float64)
 B = np.array(([7, 8, 1, 5], [9, 10, 0, 9], [11, 12, 5, 5])).astype(np.float64)
  
 A_gpu = gpuarray.to_gpu(A)
 B_gpu = gpuarray.to_gpu(B)
  
 C_gpu = linalg.dot(A_gpu, B_gpu)
  
 print(np.dot(A, B))
 print(C_gpu)

Наивная реализация перемножения матриц на OpenCL

 // First naive implementation
 __kernel void myGEMM1(const int M, const int N, const int K,
                       const __global float *A,
                       const __global float *B,
                       __global float *C) {
      
     // Thread identifiers
     const int globalRow = get_global_id(0); // Row ID of C (0..M)
     const int globalCol = get_global_id(1); // Col ID of C (0..N)
      
     // Compute a single element (loop over K)
     float acc = 0.0f;
     for (int k = 0; k < K; k++) {
         acc += A[k * M + globalRow] * B[globalCol * K + k];
     }
      
     // Store the result
     C[globalCol * M + globalRow] = acc;
 }

Параллелизм SGD

Запускаем внешний цикл SGD параллельно в пуле потоков и используем конструкции синхронизации, такие как блокировки, чтобы предотвратить состояние гонки. Но это может работать медленно из-за накладных расходов на синхронизацию.

Еще более интересная идея (называемая асинхронным SGD или Hogwild): Несколько потоков запускают SGD параллельно без какой-либо синхронизации. Теперь условия гонки могут возникнуть, но оказывается, что во многих случаях это хорошо, шум/ошибка в условиях гонки просто добавляет небольшое количество к шуму/ошибке, уже присутствующей в алгоритм из-за случайной выборки градиента.

Источники информации

  1. Principles of Large-Scale Machine Learning
  2. cuBLAS library user guide
  3. Matrix multiplication on GPU using CUDA with CUBLAS
  4. A short notice on performing matrix multiplications in PyCUDA
  5. CUDA C++ Programming Guide
  6. OpenCL SGEMM tuning for Kepler