Изменения

Перейти к: навигация, поиск

Модель алгоритма и её выбор

3170 байт добавлено, 13:49, 10 марта 2020
Источники информации
{{main|Кросс-валидация}}
Основная идея алгоритма кросс-валидации {{---}} разбить обучающую выборку на обучающую и тестовую. Таким образом, чтобы таким образом будет возможным эмулировать наличие тестовой выборки, которая не участвует участвующей в обучении, но для которой известны правильные ответы.
Достоинства и недостатки кросс-валидации:
{{main|Мета-обучение}}
Целью мета-обучения является решение задачи выбора алгоритма из портфолио алгоритмов для решения поставленной задачи без непосредственного применения каждого из них. Решение этой задачи в рамках мета-обучения сводится к задаче [https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81_%D1%83%D1%87%D0%B8%D1%82%D0%B5%D0%BB%D0%B5%D0%BC обучения с учителем]. Для этого используется заранее отобранное множество наборов данных <tex> D </tex>. Для каждого набора данных <tex> d \in D </tex> вычисляется вектор мета-признаков, которые описывают свойства этого набора данных. Ими могут быть: число категориальных или численных признаков объеков объектов в <tex> d </tex>, число возможных меток, размер <tex> d </tex> и многие другие<ref>[https://www.fruct.org/publications/ainl-fruct/files/Fil.pdf Datasets meta-feature description for recommending feature selection algorithm]</ref>. Каждый алгоритм запускается на всех наборах данных из <tex> D </tex>. После этого вычисляется эмпирический риск, на основе которого формируются метки классов. Затем мета-классификатор обучается на полученных результатах. В качестве описания набора данных выступает вектор мета-признаков, а в качестве метки — алгоритм, оказавшийся самым эффективным с точки зрения заранее выбранной меры качества.
Достоинства и недостатки мета-обучения:
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задачи классификации.
Выбор модели осуществляется на основе конвейера, организованного в древовидной структуре. Каждая вершина дерева {{---}} один из четырех операторов конвейера (preprocessing, decomposition, feature selection, modellingmodeling). Каждый конвейер начинается с одной или нескольких копий входного набора данных, которые являются листьями дерева и которые подаются в операторы в соответствии со структурой конвейера. Данные модифицируются оператором в вершине и поступают на вход следующей вершины. В библиотеке используются генетические алгоритмы для нахождения лучших конвейеров. После создания конвеера, оценивается его производительность и случайным образом изменяются части конвеера для поиска наибольшей эффективности. Время работы TPOT может варьироваться в зависимости от размера входных данных. При начальных настройках в 100 поколений с размером популяции 100, за время работы оценивается 10000 конфигураций конвеера. По времени это сравнимо с [https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search поиском по сетке] для 10000 комбинаций гиперпараметров. Это 10000 конфигураций модели со [[Кросс-валидация | скользящим контролем]] по 10 блокам, что означает, что около 100000 моделей создается и оценивается на обучающих данных в одном поиске по сетке. Поэтому, для некоторых наборов данных требуется всего несколько минут, чтобы найти высокопроизводительную модель для работы, а некоторым может потребоваться несколько дней.
После поиска конвейера его также можно экспортировать в файл Python.
Сначала используется мета-обучение на основе различных признаков и мета-признаков набора данных, чтобы найти наилучшие модели. После этого используется подход [https://en.wikipedia.org/wiki/Bayesian_optimization Байесовской оптимизации], чтобы найти наилучшие гиперпараметры для наилучших моделей.
 
На рисунке 5 показаны общие компоненты Auto-sklearn. Он состоит из 15 алгоритмов классификации, 14 методов предварительной обработки и 4 методов предварительной обработки данных. Мы параметризовали каждый из них, что привело к пространству, состоящему из 110 гиперпараметров. Большинство из них являются условными гиперпараметрами, которые активны, только если выбран соответствующий компонент. Отметим, что SMAC может обрабатывать эту обусловленность изначально.
 
[[Файл:model_5.png|900px|center|thumb| Рис 5. Структурированное пространство конфигурации. Квадратные прямоугольники обозначают родительские гиперпараметры, прямоугольники с закругленными краями являются листовыми гиперпараметрами. Серые прямоугольники отмечают активные гиперпараметры, которые образуют пример конфигурации и конвейера машинного обучения. Каждый конвейер содержит один препроцессор, классификатор и до трех методов препроцессора данных, а также соответствующие гиперпараметры.]]
== См. также ==
[[Категория: Автоматическое машинное обучение]]
[[Категория: Машинное обучение]]
84
правки

Навигация