Изменения

Перейти к: навигация, поиск

Модуль непрерывности функции

11 байт убрано, 19:30, 4 сентября 2022
м
rollbackEdits.php mass rollback
[[Отображения|Функция]] <tex>\omega: \mathbb{R}^+ \rightarrow \mathbb{R}^+</tex> называется модулем непрерывности, если:
# <tex>\omega (0) = 0 = \lim \limits_{t \to +0} \,\omega(t)</tex>
# <tex>\omega (t)</tex> не убываетнеубывает
# <tex>\omega (t_1 + t_2) \le \omega(t_1) + \omega(t_2)</tex> (полуаддитивность)
}}
{{Утверждение
|statement=
<tex>\forall n \in \mathbb{N}</tex> верно : <tex> \omega (nt) \le n \omega (t)</tex>
|about=
свойство №1
{{Утверждение
|statement=
<tex>\forall \lambda > 0</tex> верно : <tex>\omega(\lambda t) \le (1 + \lambda) \cdot \omega (t)</tex>
|about=
свойство №2
{{Утверждение
|statement=
Пусть для некоторой функции <tex>\omega</tex> выполняются аксиомы 1 и 2 определения, и функция <tex>\frac{\omega(t)}t</tex> убываетне возрастает. Тогда <tex>\omega</tex> - модуль непрерывности.
|about=
свойство №3
|proof=
Видно, что треубется требуется доказать только полуаддитивность.
Т. к. <tex>t_1, t_2 < t_1 + t_2</tex>, то <tex>\frac{\omega (t_1)}{t_1}, \frac{\omega(t_2)}{t_2} \ge \frac{\omega(t_1 + t_2)}{t_1 + t_2}</tex>.
Тогда <tex>\omega(t_1) + \omega(t_2) = t_1 \cdot \frac{\omega(t_1)}{t_1} + t_2 \cdot \frac{\omega(t_2)}{t_2} \ge t_1 \cdot \frac{\omega(t_1 + t_2)}{t_1 + t_2} + t_2 \cdot \frac{\omega(t_1 + t_2)}{t_1 + t_2} = \omega(t_1 + t_2) </tex>.
#<tex>\omega^*</tex> выпукла вверх
#<tex>\omega^*(0) = \inf\limits_{t > 0}\,{\omega(t)} = 0</tex> (т. к. <tex>\lim \limits_{t \to +0} \,\omega(t) = 0</tex> )
#<tex>\omega^*</tex> не убываетнеубывает. В самом деле, <tex>u_1 \le u_2 \Rightarrow (1 + \frac{u_1}t)\cdot\omega(t) \leq (1 + \frac{u_2}t)\cdot\omega(t)</tex>. Переходя к нижмин нижним граням обеих частей последнего неравенства, получаем <tex>u_1 \le u_2 \Rightarrow \omega^*(u_1) \le \omega^*(u_2)</tex>.
По свойству №2 модулей непрерывности <tex>\omega(u) \le (1 + \frac ut) \cdot \omega (t)</tex>. Рассматривая точные нижние грани обеих частей и используя определение функции <tex>\omega^*(u)</tex>, получим требуемые в условии теоремы неравенства.
1632
правки

Навигация