Редактирование: Независимые случайные величины

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
== Определения ==
+
{{В разработке}}
 +
== Определение ==
  
 
{{Определение
 
{{Определение
 
|id=def1
 
|id=def1
|definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> [[Независимые события|независимы]].<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
+
|definition='''Независимые случайные величины''' - <tex> \xi</tex> и <tex>\eta</tex> называются независимыми, если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> независимы.<br> <tex>P((\xi \leqslant \alpha) \bigcap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)</tex>
 
}}
 
}}
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
+
Иначе говоря, две случайные величины называются независимыми, если значение одной из них не влияет на значение другой.
  
=== Независимость в совокупности ===
+
== Дискретные случайные величины ==
 
{{Определение
 
{{Определение
 
|id=def2
 
|id=def2
|definition=Случайные величины <tex>\xi_1, \ldots ,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1, \ldots ,\xi_n \leqslant \alpha_n</tex> независимы в совокупности.
+
|definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> с дискретным распределением независимы (в совокупности), если для <tex>\forall a_1,...,a_n</tex> имеет место равенство:<br><tex>P(\xi_1=a_1,...,\xi_n=a_n)=P(\xi_1=a_1)·...·P(\xi_n=a_n)</tex>
 
}}
 
}}
 +
Стоит отметить, что если <tex>\xi</tex> и <tex>\eta</tex> - дискретные случайные величины, то достаточно рассматривать случай <tex>\xi = \alpha</tex>, <tex>\eta = \beta</tex>.
  
 
== Примеры ==
 
== Примеры ==
 
==== Карты ====
 
 
Пусть есть колода из <tex>36</tex> карт (<tex>4</tex> масти и <tex>9</tex> номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:
 
 
<tex>\xi</tex> {{---}} масть вытянутой карты : <tex>0</tex> {{---}} червы, <tex>1</tex> {{---}} пики, <tex>2</tex> {{---}} крести, <tex>3</tex> {{---}} бубны
 
 
<tex>\eta</tex>: принимает значение <tex>0</tex> при вытягивании карт с номиналами <tex>6, 7, 8, 9, 10</tex>  или <tex>1</tex>  при вытягивании валета, дамы, короля или туза
 
 
Для доказательства того, что <tex>\xi, \eta</tex> независимы, требуется рассмотреть все <tex>\alpha,\beta</tex> и проверить выполнение равенства:
 
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
 
 
Для примера рассмотрим <tex>\alpha = 0, \beta = 0</tex>, остальные рассматриваются аналогично:
 
 
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex>
 
 
<tex>P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex> \cdot </tex> <tex dpi = "160" > \dfrac{5}{9} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex>
 
 
==== Тетраэдр ====
 
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \{0, 1, 2, 3\}</tex>. <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{2} \right \rfloor</tex>.
 
 
Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>.
 
 
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
 
 
Заметим, что если: <tex>\xi (i) = i \bmod 3</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{3} \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) =  </tex> <tex dpi = "160" > \dfrac{1}{2} </tex> , <tex>P(\eta \leqslant 0) =  </tex> <tex dpi = "160" > \dfrac{3}{4} </tex> , <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) =  </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex>  \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 0)</tex>.
 
  
 
==== Честная игральная кость ====
 
==== Честная игральная кость ====
Рассмотрим вероятностное пространство «честная игральная кость»: <tex>\Omega = \{1, 2, 3, 4, 5, 6\}</tex>, <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta (i) = \dfrac{\mathcal {b} i}{3 \mathcal {c}}</tex>.
+
Рассмотрим вероятностное пространство честная игральная кость
Для того, чтобы показать, что величины <tex>\xi, \eta</tex> зависимы, надо найти такие <tex>\alpha, \beta</tex>, при которых
+
<tex>\Omega = \mathcal {f} 1, 2, 3, 4, 5, 6 \mathcal {g}</tex>.
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
+
<tex>\xi</tex> и <tex>\eta</tex> - случайные величины.
 
+
<tex>\xi (i) = i \% 2</tex>, <tex>\eta (i) = [i \geqslant 3]</tex>.
При <tex>\alpha = 0, \beta = 1</tex>:
+
Для того, чтобы показать, что они независимы, надо рассмотреть все <tex>\alpha</tex> и <tex>\beta</tex>.
  
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \dfrac{5}{6} </tex>
+
Для примера рассмотрим: <tex>\alpha = 0</tex>, <tex>\beta = 0</tex>.
 +
Тогда <tex>P( \xi \leqslant 0) = \frac{1}{2}</tex>, <tex>P( \eta \leqslant 0) = \frac{2}{3}</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) = \frac{1}{3}</tex>.
 +
Аналогичным образом можно проверить, что для оставшихся значений <tex>\alpha</tex> и <tex>\beta</tex> события также являются независимыми, а это значит, что случайные величины <tex>\alpha</tex> и <tex>\beta</tex> независимы.
  
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 1)</tex>, откуда видно, что величины не являются независимыми.
+
==== Тетраедер ====
 +
<tex>\Omega = \mathcal {f} 0, 1, 2, 3 \mathcal {g}</tex>.
 +
<tex>\xi</tex> и <tex>\eta</tex> - случайные величины.
 +
<tex>\xi (x) = i \% 2</tex>, <tex>\eta(x) = \left \lfloor \frac{x}{2} \right \rfloor</tex>
 +
Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 0</tex>.
 +
<tex>P(\xi \leqslant 0) = \frac{1}{2}</tex>, <tex>P(\eta \leqslant 1) = 1</tex>
 +
<tex>P(\xi \leqslant 0</tex> и <tex>\eta \leqslant 1) = \frac{1}{2}</tex>
 +
Для этих значений события являются независимыми, как и для других значений <tex>\xi</tex> и <tex>\eta</tex> (рассматривается аналогично), поэтому эти случайные величины независимы.
  
==См.также==
+
Заметим, что если:
*[[Вероятностное пространство, элементарный исход, событие]]
+
<tex>\xi (x) = i \% 3</tex>, <tex>\eta(x) = \left \lfloor \frac{x}{3} \right \rfloor</tex>
*[[Дискретная случайная величина]]
+
То эти величины зависимы, т.к. <tex>\eta(3) = 1</tex>, и в этом случае, мы можем однозначно определить значение <tex>\xi</tex>
*[[Математическое ожидание случайной величины]]
 
  
== Источники информации ==
+
== См. также ==
*[http://nsu.ru/mmf/tvims/chernova/tv/lec/node38.html НГУ {{---}} Независимость случайных величин]
+
[[Дискретная случайная величина]]
  
*[http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия {{---}} Независимость (теория вероятностей)]
+
== Литература и источники информации ==
 +
[http://nsu.ru/mmf/tvims/chernova/tv/lec/node38.html Независимость случайных величин]
  
[[Категория: Дискретная математика и алгоритмы]]
+
[http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия: Независимость (теория вероятностей)]
[[Категория: Теория вероятности]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: