Редактирование: Независимые случайные величины

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
== Определения ==
+
== Определение ==
  
{{Определение
+
'''Независимые случайные величины''' - <tex> \xi </tex> и <tex>\eta</tex> называются независимыми, если для <tex>\forall \alpha </tex> и <tex>\beta \in \mathbb R</tex> события <tex> \xi \leqslant \alpha</tex> и <tex> \eta \leqslant \beta</tex> независимы. Иначе говоря, случайная величина <tex>\xi</tex> называется независимой от величины <tex>\eta</tex>, если вероятность получить при измерениях некоторое значение величины <tex>\xi</tex> не зависит от значения величины <tex>\eta</tex>.
|id=def1
 
|definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> [[Независимые события|независимы]].<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
 
}}
 
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
 
  
=== Независимость в совокупности ===
+
== Замечание ==
{{Определение
 
|id=def2
 
|definition=Случайные величины <tex>\xi_1, \ldots ,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1, \ldots ,\xi_n \leqslant \alpha_n</tex> независимы в совокупности.
 
}}
 
  
 +
Стоить отметить, что если <tex>\xi</tex> и <tex>\eta</tex> - дискретные случайные величины, то достаточно рассматривать случай <tex>\xi</tex> = <tex>\alpha</tex>, <tex>\eta</tex> = <tex>\beta</tex>. Но не достаточно рассматривать случай <tex>\alpha</tex> = <tex>\beta</tex>. Покажем контр-пример для этого случая. Рассмотрим вероятностное пространство честная монета. <tex>\Omega</tex> = {0, 1}. Пусть <tex>\xi</tex>(i) = i, <tex>\eta</tex>(i) = i + 2. Если перебрать все значения <tex>\alpha</tex> (<tex>\alpha</tex> = <tex>\beta</tex>), то можно показать, что события независимы. Но сами случайные величины не являются независимыми.
 
== Примеры ==
 
== Примеры ==
  
==== Карты ====
+
=== Честная игральная кость ===
 +
Рассмотрим вероятностное пространство честная игральная кость <tex>\Omega</tex> = {1, 2, 3, 4, 5, 6}. <tex>\xi</tex> и <tex>\eta</tex> - случайные величины. <tex>\xi</tex>(i) = i % 2, <tex>\eta</tex>(i) = [i <tex>\geqslant</tex> 3]. Пусть <tex>\alpha</tex> = 0, <tex>\beta</tex> = 0. Тогда P(<tex>\xi \leqslant</tex> 0) = 1/2, P(<tex>\eta \leqslant</tex> 0) = 2/3, P((<tex>\xi \leqslant</tex> 0)<tex>\cap</tex>(<tex>\eta \leqslant</tex> 0)) = 1/3. Эти события независимы, а значит случайные величины <tex>\xi</tex> и <tex>\eta</tex> независимы.
  
Пусть есть колода из <tex>36</tex> карт (<tex>4</tex> масти и <tex>9</tex> номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:
 
  
<tex>\xi</tex> {{---}} масть вытянутой карты : <tex>0</tex> {{---}} червы, <tex>1</tex> {{---}} пики, <tex>2</tex> {{---}} крести, <tex>3</tex> {{---}} бубны
+
== Литература и источники информации ==
  
<tex>\eta</tex>: принимает значение <tex>0</tex> при вытягивании карт с номиналами <tex>6, 7, 8, 9, 10</tex>  или <tex>1</tex>  при вытягивании валета, дамы, короля или туза
+
[http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия]
  
Для доказательства того, что <tex>\xi, \eta</tex> независимы, требуется рассмотреть все <tex>\alpha,\beta</tex> и проверить выполнение равенства:
+
[http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node13.html http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node13.html]
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
 
 
 
Для примера рассмотрим <tex>\alpha = 0, \beta = 0</tex>, остальные рассматриваются аналогично:
 
 
 
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex>
 
 
 
<tex>P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex> \cdot </tex> <tex dpi = "160" > \dfrac{5}{9} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex>
 
 
 
==== Тетраэдр ====
 
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \{0, 1, 2, 3\}</tex>. <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{2} \right \rfloor</tex>.
 
 
 
Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>.
 
 
 
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
 
 
 
Заметим, что если: <tex>\xi (i) = i \bmod 3</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{3} \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) =  </tex> <tex dpi = "160" > \dfrac{1}{2} </tex> , <tex>P(\eta \leqslant 0) =  </tex> <tex dpi = "160" > \dfrac{3}{4} </tex> , <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) =  </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex>  \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 0)</tex>.
 
 
 
==== Честная игральная кость ====
 
Рассмотрим вероятностное пространство «честная игральная кость»: <tex>\Omega = \{1, 2, 3, 4, 5, 6\}</tex>, <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta (i) = \dfrac{\mathcal {b} i}{3 \mathcal {c}}</tex>.
 
Для того, чтобы показать, что величины <tex>\xi, \eta</tex> зависимы, надо найти такие <tex>\alpha, \beta</tex>, при которых
 
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
 
 
 
При <tex>\alpha = 0, \beta = 1</tex>:
 
 
 
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \dfrac{5}{6} </tex>
 
 
 
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 1)</tex>, откуда видно, что величины не являются независимыми.
 
 
 
==См.также==
 
*[[Вероятностное пространство, элементарный исход, событие]]
 
*[[Дискретная случайная величина]]
 
*[[Математическое ожидание случайной величины]]
 
 
 
== Источники информации ==
 
*[http://nsu.ru/mmf/tvims/chernova/tv/lec/node38.html НГУ {{---}} Независимость случайных величин]
 
 
 
*[http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия {{---}} Независимость (теория вероятностей)]
 
 
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Теория вероятности]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: