Изменения

Перейти к: навигация, поиск

Нейронные сети, перцептрон

1920 байт добавлено, 17:41, 23 января 2021
Изменено рис в рисунок
'''Искусственная нейронная сеть (ИНС)''' (англ. ''Artificial neural network (ANN)'') {{---}} это упрощенная модель биологической нейронной сети, представляющая собой совокупность искусственных нейронов, взаимодействующих между собой.
[[File:Нейронная_сеть.png|700px|thumb|Рисунок 1. [https://neuralnet.info/chapter/%D0%B2%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5/#%D0%92-%D1%86%D0%B5%D0%BB%D0%BE%D0%BC-%D0%BE%D0%B1-%D0%98%D0%9D%D0%A1 Упрощение биологической нейронной сети]]]
Основные принципы работы нейронных сетей были описаны еще в 1943 году Уорреном Мак-Каллоком и Уолтером Питтсом<ref>[https://en.wikipedia.org/wiki/Artificial_neuron Artificial neuron, Wikipedia]</ref>. В 1957 году нейрофизиолог Фрэнк Розенблатт разработал первую нейронную сеть<ref>[https://en.wikipedia.org/wiki/Perceptron Perceptron, Wikipedia]</ref>, а в 2010 году большие объемы данных для обучения открыли возможность использовать нейронные сети для машинного обучения.
==Структура нейронной сети==
[[File:Искусственный_нейрон_схема.png|700px|thumb|Рисунок 2. Схема [https://neuralnet.info/chapter/%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%8B-%D0%B8%D0%BD%D1%81/#%D0%98%D1%81%D0%BA%D1%83%D1%81%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9-%D0%BD%D0%B5%D0%B9%D1%80%D0%BE%D0%BD Схема искусственного нейрона]]]
Хорошим примером биологической нейронной сети является человеческий мозг. Наш мозг {{---}} сложнейшая биологическая нейронная сеть, которая принимает информацию от органов чувств и каким-то образом ее обрабатывает (узнавание лиц, возникновение ощущений и т.д.). Мозг же, в свою очередь, состоит из нейронов, взаимодействующих между собой.
===Однослойные нейронные сети===
[[File:Single-layer-neural-net-scheme.png|500px|thumb|Рисунок 3. Схема [https://studfiles.net/preview/3170620/page:3/ Схема однослойной нейронной сети]]]
'''Однослойная нейронная сеть''' (англ. ''Single-layer neural network'') {{---}} сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.
===Многослойные нейронные сети===
[[File:Multi-layer-neural-net-scheme.png|500px|thumb|Рисунок 4. Схема [https://wiki.loginom.ru/articles/multilayer-neural-net.html Схема многослойной нейронной сети]]]
'''Многослойная нейронная сеть''' (англ. ''Multilayer neural network'') {{---}} нейронная сеть, состоящая из входного, выходного и расположенного(ых) между ними одного (нескольких) скрытых слоев нейронов.
===Сети с обратными связями===
[[File:Сети_с_обратными_связями.png|400px|thumb|Рисунок 5. Схема [https://neuralnet.info/chapter/%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%8B-%D0%B8%D0%BD%D1%81/#%D0%A1%D0%B5%D1%82%D0%B8-%D1%81-%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%BC%D0%B8-%D1%81%D0%B2%D1%8F%D0%B7%D1%8F%D0%BC%D0%B8 Схема сети с обратными связями]]]
'''[[Рекуррентные нейронные сети|Сети с обратными связями]]'''<sup>на 16.01.19 не создан</sup> (англ. ''Recurrent neural network'') {{---}} искусственные нейронные сети, в которых выход нейрона может вновь подаваться на его вход. В более общем случае это означает возможность распространения сигнала от выходов к входам.
В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).
 
 
 
 
 
 
 
 
 
 
 
==Обучение нейронной сети==
'''Тестовая выборка''' {{---}} конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит оценка качества работы сети.
Само обучение нейронной сети можно разделить на два подхода: [[Обучение с учителем|обучение с учителем]]<sup>[на 1628.01.19 не создан]</sup> и [[Обучение без учителя|обучение без учителя]]<sup>[на 1628.01.19 не создан]</sup>. В первом случае веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов, а во втором случае сеть самостоятельно классифицирует входные сигналы.
==Перцептрон==
[[File:Перцептрон.png|350px|thumb|Рисунок 6. Схема [https://neuralnet.info/chapter/%D0%BF%D0%B5%D1%80%D1%81%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD%D1%8B/#%D0%9F%D0%B5%D1%80%D1%81%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD Схема перцептрона]]]
'''Перцептрон''' (англ. ''Perceptron'') {{---}} простейший вид нейронных сетей. В основе лежит математическая модель восприятия информации мозгом, состоящая из сенсоров, ассоциативных и реагирующих элементов.
Принцип работы перцептрона следующий:
# Первыми в работу включаются S-элементы. Они могут находиться либо в состоянии покоя (сигнал равен ''0''), либо в состоянии возбуждения (сигнал равен ''1'').;# Далее сигналы от S-элементов передаются A-элементам по так называемым S-A связям. Эти связи могут иметь веса, равные только ''-1'', ''0'' или ''1''.;# Затем сигналы от сенсорных элементов, прошедших по S-A связям, попадают в A-элементы, которые еще называют ассоциативными элементами.;
#* Одному A-элементу может соответствовать несколько S-элементов;
#* Если сигналы, поступившие на A-элемент, в совокупности превышают некоторый его порог ​<tex>\theta</tex>​, то этот A-элемент возбуждается и выдает сигнал, равный ''1'';
#* В противном случае (сигнал от S-элементов не превысил порога A-элемента), генерируется нулевой сигнал.;# Далее сигналы, которые произвели возбужденные A-элементы, направляются к сумматору (R-элемент), действие которого нам уже известно. Однако, чтобы добраться до R-элемента, они проходят по A-R связям, у которых тоже есть веса (которые уже могут принимать любые значения, в отличие от S-A связей).;
# R-элемент складывает друг с другом взвешенные сигналы от A-элементов, а затем
#* если превышен определенный порог, генерирует выходной сигнал, равный ''1'';
===Классификация перцептронов===
[[File:Однслойный_перцептрон.png|300px|thumb|Рисунок 7. Схема [https://neuralnet.info/chapter/%D0%BF%D0%B5%D1%80%D1%81%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD%D1%8B/#%D0%9E%D0%B4%D0%BD%D0%BE%D1%81%D0%BB%D0%BE%D0%B9%D0%BD%D1%8B%D0%B9-%D0%BF%D0%B5%D1%80%D1%81%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD Схема однослойного перцептрона]]]
'''Перцептрон с одним скрытым слоем''' ('''элементарный перцептрон''', англ. ''elementary perceptron'') {{---}} перцептрон, у которого имеется только по одному слою S, A и R элементов.
Задача обучения перцептрона {{---}} подобрать такие <tex>w_0, w_1, w_2, \ldots, w_n</tex>, чтобы <tex>sign(\sigma(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n))</tex> как можно чаще совпадал с <tex>y(x)</tex> {{---}} значением в обучающей выборке (здесь <tex>\sigma</tex> {{---}} функция активации). Для удобства, чтобы не тащить за собой свободный член <tex>w_0</tex>, добавим в вектор $x$ лишнюю «виртуальную размерность» и будем считать, что <tex>x = (1, x_1, x_2, \ldots, x_n)</tex>. Тогда <tex>w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n</tex> можно заменить на <tex>w^T \cdot x</tex>.
Чтобы обучать эту функцию, сначала надо выбрать функцию ошибки, которую потом можно оптимизировать [[Стохастический градиентный спуск|градиентным спуском]]<sup>[на 16.01.19 не создан]</sup>. Число неверно классифицированных примеров не подходит на эту кандидатуру, потому что эта функция кусочно-гладкая, с массой разрывов: она будет принимать только целые значения и резко меняться при переходе от одного числа неверно классифицированных примеров к другому. Поэтому использовать будем другую функцию, так называемый ''критерий перцептрона'': <tex>E_P(w) = -\sum_{x \in M} y(x)(\sigma(w^T \cdot x))</tex>, где <tex>M</tex> {{---}} множество примеров, которые перцептрон с весами <tex>w</tex> классифицирует неправильно.
Иначе говоря, мы минимизируем суммарное отклонение наших ответов от правильных, но только в неправильную сторону; верный ответ ничего не вносит в функцию ошибки. Умножение на <tex>y(x)</tex> здесь нужно для того, чтобы знак произведения всегда получался отрицательным: если правильный ответ ''−1'', значит, перцептрон выдал положительное число (иначе бы ответ был верным), и наоборот. В результате у нас получилась кусочно-линейная функция, дифференцируемая почти везде, а этого вполне достаточно.
===Применение===
* Решение задач классификации, если объекты классификации обладают свойством линейной разделимости;* Прогнозирование и распознавание образов;* Управление агентами<ref>[https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D1%86%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD#%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%B5%D1%80%D1%86%D0%B5%D0%BF%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%B2 Применения перцептрона, Wikipedia]</ref>.
===Примеры кода=======Пример использования с помощью scikit-learn<ref>[https://scikit-learn.org Библиотека scikit-learn для Python]</ref>====
Будем классифицировать с помощью перцептрона датасет irisMNIST<ref>[https://en.wikipedia.org/wiki/Iris_flower_data_set MNIST_database Датасет irisMNIST]</ref>.
# Load required libraries
import numpy as np
# Load the iris mnist dataset iris mnist = datasets.load_irisload_digits()
# Create our X and y data
n_samples = len(mnist.images) X = irismnist.images.datareshape((n_samples, -1)) y = irismnist.target
# Split the data into 70% training data and 30% test data
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
# Create a multilayer perceptron object
mppn = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5256, 2512, 128), random_state=1)
# Train the perceptrons
# View the accuracies of the model, which is: 1 - (observations predicted wrong / total observations)
print('Single-layer perceptron accuracy: %.2f4f' % accuracy_score(y_test, y_pred)) print('Multilayer perceptron accuracy: %.2f4f' % accuracy_score(y_test, multi_y_pred))
Вывод:
Single-layer perceptron accuracy: 0.769574 Multilayer perceptron accuracy: 0.969759
====Пример использования с помощью tensorflow<ref>[https://www.tensorflow.org/ Библиотека tensorflow для Python]</ref>====
Будем классифицировать цифры из того же датасета MNIST<ref>[https://en.wikipedia.org/wiki/MNIST_database Датасет MNIST]</ref>.
# Load required libraries
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy: %s" % sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
 
[[File:Tensorflow-mnist-failures.png|400px|thumb|Рисунок 8. <br> Правильные метки {{---}} 5, 4, 9, 7. <br> Результат классификации {{---}} 6, 6, 4, 4.]]
Вывод:
Accuracy: 0.9164
 
 
На рисунке справа показаны четыре типичных изображения, на которых классификаторы ошибаются. Согласитесь, случаи действительно тяжелые.
 
====Пример на языке Java====
Пример классификации с применением <code>weka.classifiers.functions.MultilayerPerceptron</code><ref>[http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html/ Weka, MLP]</ref>
 
<code>Maven</code> зависимость:
<dependency>
<groupId>nz.ac.waikato.cms.weka</groupId>
<artifactId>weka-stable</artifactId>
<version>3.8.0</version>
</dependency>
 
'''import''' weka.classifiers.functions.MultilayerPerceptron;
'''import''' weka.core.converters.CSVLoader;
'''import''' java.io.File;
 
<font color="green">// read train & test datasets and build MLP classifier</font>
'''var''' trainds = new DataSource("etc/train.csv");
'''var''' train = trainds.getDataSet();
train.setClassIndex(train.numAttributes() - 1);
'''var''' testds = new DataSource("etc/test.csv");
'''var''' test = testds.getDataSet();
test.setClassIndex(test.numAttributes() - 1);
'''var''' mlp = new MultilayerPerceptron();
mlp.buildClassifier(train);
<font color="green">// Test the model</font>
'''var''' eTest = new Evaluation(train);
eTest.evaluateModel(mlp, test);
<font color="green">// Print the result à la Weka explorer:</font>
'''var''' strSummary = eTest.toSummaryString();
System.out.println(strSummary);
==См. также==
*[[:Сверточные нейронные сети|Сверточные нейронные сети]]
*[[:Рекуррентные нейронные сети|Рекуррентные нейронные сети]]
*[[:Рекурсивные нейронные сети|Рекурсивные нейронные сети]]<sup>[на 28.01.19 не создан]</sup> 
==Примечания==
<references/>
Анонимный участник

Навигация