Изменения

Перейти к: навигация, поиск

Нейронные сети, перцептрон

730 байт убрано, 00:23, 19 января 2019
Нет описания правки
===Однослойные нейронные сети===
[[File:Однослойная_нейронная_сетьSingler-layer-network.png|400px500px|thumb|Схема однослойной нейронной сети]]
'''Однослойная нейронная сеть''' (англ. ''Single-layer neural network'') {{---}} сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.
Как видно из схемы однослойной нейронной сети, представленной справа, сигналы <tex>x_1, x_2, \ldots x_n</tex> поступают на входной слой (который не считается за слой нейронной сети), а затем сигналы распределяются на выходной слой обычных нейронов. На каждом ребре от нейрона входного слоя к нейрону выходного слоя написано число {{---}} вес соответствующей связи.
 
 
 
===Многослойные нейронные сети===
[[File:Многослойная нейронная сетьсхема.png|400px600px|thumb|Схема многослойной нейронной сети]]
'''Многослойная нейронная сеть''' (англ. ''Multilayer neural network'') {{---}} нейронная сеть, состоящая из входного, выходного и расположенного(ых) между ними одного (нескольких) скрытых слоев нейронов.
Помимо входного и выходного слоев эти нейронные сети содержат промежуточные, ''скрытые слои''. Такие сети обладают гораздо большими возможностями, чем однослойные нейронные сети, однако методы обучения нейронов скрытого слоя были разработаны относительно недавно.
Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиямна станках. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.
[[File:Сети_с_обратными_связями.png|400px|thumb|Схема сети с обратными связями]]
'''[[Рекуррентные нейронные сети|Сети с обратными связями]]''' <sup>на 16.01.19 не создан</sup> (англ. ''Recurrent neural network'') {{---}} искусственные нейронные сети, в которых выход нейрона может вновь подаваться на его вход. В более общем случае это означает возможность распространения сигнала от выходов к входам.
В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).
Возможность сигналов циркулировать в сети открывает новые, удивительные возможности нейронных сетей. С помощью таких сетей можно создавать нейросети, восстанавливающие или дополняющие сигналы. Другими словами такие нейросети имеют свойства кратковременной памяти (как у человека).  
==Обучение нейронной сети==
'''Обучение нейронной сети''' (англ. ''Neural net training'') {{---}} поиск такого набора весовых коэффициентов, при котором входной сигнал после прохода по сети преобразуется в нужный нам выходной. Такой подход к термину «обучение нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей. Каждая из них в отдельности состоит из нейронов одного типа (с одинаковой функцией активации). Мы обучаемся благодаря изменению синапсов {{---}} элементов, которые усиливают/ослабляют входной сигнал.
Если обучать сеть, используя только один входной сигналЭто определение «обучения нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей, то сеть просто «запомнит правильный ответ»каждая из которых в отдельности состоит из нейронов одного типа (с одинаковой функцией активации). Со стороны будет казатьсяНаш мозг обучается благодаря изменению синапсов {{---}} элементов, что она очень быстро «обучилась». И как только мы подадим немного измененный которые усиливают или ослабляют входной сигнал, ожидая увидеть правильный ответ, то сеть выдаст бессмыслицу.
В самом делеЕсли обучать сеть, используя только один входной сигнал, зачем нам то сетьпросто «запомнит правильный ответ», определяющая лицо а как только на одном фотомы подадим немного измененный сигнал, вместо правильного ответа получим бессмыслицу. Мы ждем от сети способности ''обобщать'' какие-то признаки и узнавать лица и решать задачу на других фотографиях тожеразличных входных данных. Именно с этой целью и создаются ''обучающие выборки''.
'''Обучающая выборка''' (англ. ''Training set'') {{---}} конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит обучение сети.
После обучения сети, то есть когда сеть выдает корректные результаты для всех входных сигналов из обучающей выборки, ее можно использовать на практике. Однако прежде чем сразу использовать нейронную сеть, обычно производят оценку качества ее работы на так называемой ''тестовой выборке''.
'''Тестовая выборка''' (англ. ''Testing set'') {{---}} конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит оценка качества работы сети.
Само обучение нейронной сети можно разделить на два подхода: [[Обучение с учителем|обучение с учителем]]<sup>[на 16.01.19 не создан]</sup> и [[Обучение без учителя|обучение без учителя]]<sup>[на 16.01.19 не создан]</sup>. В первом случае веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов, а во втором случае сеть самостоятельно классифицирует входные сигналы.
# Первыми в работу включаются S-элементы. Они могут находиться либо в состоянии покоя (сигнал равен ''0''), либо в состоянии возбуждения (сигнал равен ''1'').
# Далее сигналы от S-элементов передаются A-элементам по так называемым S-A связям. Эти связи могут иметь веса, равные только ''-1'', ''0'' или ''1''.
# Затем сигналы от сенсорных элементов, прошедших по S-A связям , попадают в A-элементы, которые еще называют ассоциативными элементами.#* Стоит заметить, что одному Одному A-элементу может соответствовать несколько S-элементов;
#* Если сигналы, поступившие на A-элемент, в совокупности превышают некоторый его порог ​<tex>\theta</tex>​, то этот A-элемент возбуждается и выдает сигнал, равный ''1'';
#* В противном случае (сигнал от S-элементов не превысил порога A-элемента), генерируется нулевой сигнал.
# Далее сигналы, которые произвели возбужденные A-элементы, направляются к сумматору (R-элемент), действие которого нам уже известно. Однако, чтобы добраться до R-элемента, они проходят по A-R связям, у которых тоже есть веса. Однако, здесь они (которые уже могут принимать любые значения (, в отличие от S-A связей).
# R-элемент складывает друг с другом взвешенные сигналы от A-элементов, а затем
#* если превышен определенный порог, генерирует выходной сигнал, равный ''1'';
'''Многослойный перцептрон по Розенблатту''' (англ. ''Rosenblatt multilayer perceptron'') {{---}} перцептрон, который содержит более 1 слоя А-элементов.
'''Многослойный перцепртрон перцептрон по Румельхарту''' (англ. ''Rumelhart multilater perceptron'') {{---}} частный случай многослойного персептрона по Розенблатту, с двумя особенностями:
* S-A связи могут иметь произвольные веса и обучаться наравне с A-R связями;
* Обучение производится по специальному алгоритму, который называется обучением по методу обратного распространения ошибки.
[[Категория: Машинное обучение]]
[[Категория: Искусственные нейронные сети]]
69
правок

Навигация