Неравенство Маркова — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Двоеточие)
Строка 18: Строка 18:
 
| proof = Возьмем для доказательства следующее понятие:
 
| proof = Возьмем для доказательства следующее понятие:
  
Пусть <tex> A</tex> {{---}} некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет распределение Бернулли с параметром:
+
Пусть <tex> A</tex> {{---}} некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет [[Схема Бернулли|распределение Бернулли]] с параметром:
 
:<tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>,
 
:<tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>,
 
и ее [[Математическое ожидание случайной величины| математическое ожидание]] равно вероятности успеха
 
и ее [[Математическое ожидание случайной величины| математическое ожидание]] равно вероятности успеха
Строка 42: Строка 42:
  
 
{{Теорема
 
{{Теорема
 +
|id = thCheb
 
|about = Неравенство Чебышева
 
|about = Неравенство Чебышева
 
|statement =
 
|statement =
Строка 68: Строка 69:
  
 
| proof =
 
| proof =
Согласно неравенству Чебышева
+
Если в доказательстве [[#thCheb|неравенства Чебышева]] вместо <tex> \geqslant </tex> поставить <tex> > </tex> рассуждения не изменятся, так как
: <tex>\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi|\geqslant 3\sqrt{\mathbb D\mathrm \xi})\leqslant \dfrac {\mathbb D\mathrm \xi}{(3\sqrt{\mathbb D\mathrm \xi})^2} = \dfrac {1} {9}</tex>
+
для <tex>x>0</tex> неравенство  <tex>|\xi-\mathbb E\mathrm \xi| > x</tex> равносильно неравенству <tex>(\xi-\mathbb E\mathrm \xi)^2 > x^2</tex>, поэтому:
 +
 +
: <tex>\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi|> 3\sqrt{\mathbb D\mathrm \xi})\leqslant \dfrac {\mathbb D\mathrm \xi}{(3\sqrt{\mathbb D\mathrm \xi})^2} = \dfrac {1} {9}</tex>
 
Отсюда заметим, что вероятность отклониться значению случайной величины от значения [[Математическое ожидание случайной величины| математического ожидания]] меньше чем <tex>\dfrac {1}{9}</tex>
 
Отсюда заметим, что вероятность отклониться значению случайной величины от значения [[Математическое ожидание случайной величины| математического ожидания]] меньше чем <tex>\dfrac {1}{9}</tex>
 
}}
 
}}

Версия 22:06, 4 июня 2017

Неравенство Маркова

Определение:
Нера́венство Ма́ркова (англ. Markov's inequality) в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Теорема (Неравенство Маркова):
Пусть случайная величина [math]X: \Omega \rightarrow \mathbb R\mathrm+[/math] определена на вероятностном пространстве ([math]\Omega[/math], [math]F[/math], [math]\mathbb R[/math]), и ее математическое ожидание [math] \mathbb E\mathrm |\xi|\lt \mathcal {1}[/math]. Тогда:
[math]\forall ~x \gt 0~~ \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} [/math]

где:

[math] x [/math] — константа соответствующая некоторому событию в терминах математического ожидания
[math] \xi [/math] — случайная величина
[math] \mathbb P\mathrm(|\xi| \geqslant x)[/math] — вероятность отклонения модуля случайной величины от [math] x [/math]
[math]\mathbb E\mathrm |\xi|[/math] математическое ожидание случайной величины
Доказательство:
[math]\triangleright[/math]

Возьмем для доказательства следующее понятие:

Пусть [math] A[/math] — некоторое событие. Назовем индикатором события [math]A[/math] случайную величину [math]I[/math], равную единице если событие [math]A[/math] произошло, и нулю в противном случае. По определению величина [math]I(A)[/math] имеет распределение Бернулли с параметром:

[math] p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)[/math],

и ее математическое ожидание равно вероятности успеха [math] p = \mathbb P\mathrm (A) [/math]. Индикаторы прямого и противоположного событий связаны равенством [math]I(A) + I(\overline A) = 1[/math]. Поэтому

[math]|\xi|=|\xi|\cdot I(|\xi|\lt x)+|\xi|\cdot I(|\xi|\geqslant x)\geqslant |\xi|\cdot I(|\xi|\geqslant x)\geqslant x\cdot I(|\xi| \geqslant x)[/math].

Тогда:

[math] \mathbb E |\xi|\geqslant \mathbb E\mathrm(x\cdot I(|\xi|\geqslant x)) = x\cdot \mathbb P\mathrm (|\xi|\geqslant x) [/math].

Разделим обе части на [math]x[/math]:

[math] \mathbb P (|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} [/math]
[math]\triangleleft[/math]

Пример

Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.

[math]\mathbb P\mathrm (|\xi|\geqslant 15)\leqslant 3/15 = 0.2[/math]

Неравенство Чебышева

Определение:
Неравенство Чебышева (англ. Chebyshev's inequality) является следствием неравенства Маркова и утверждает, что случайная величина в основном принимает значения, близкие к значению математического ожидания. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.


Теорема (Неравенство Чебышева):
Если [math]\mathbb E\mathrm \xi^2\lt \mathcal 1[/math], то [math]\forall x \gt 0[/math] будет выполнено
[math]\mathbb P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) \leqslant \dfrac {\mathbb D\mathrm \xi}{x^2}[/math]

где:

[math]\mathbb E\mathrm \xi^2[/math] математическое ожидание квадрата случайного события.
[math]E\mathrm \xi[/math] математическое ожидание случайного события
[math] P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) [/math] — вероятность отклонения случайного события от его математического ожидания хотя бы на [math] x[/math]
[math] \mathbb D\mathrm \xi [/math]дисперсия случайного события
Доказательство:
[math]\triangleright[/math]

Для [math]x\gt 0[/math] неравенство [math]|\xi-\mathbb E\mathrm \xi| \geqslant x[/math] равносильно неравенству [math](\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2[/math], поэтому

[math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \geqslant x) = \mathbb P\mathrm((\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2 ) \leqslant \dfrac {\mathbb E\mathrm(\xi-\mathbb E\mathrm\xi)^2}{x^2} = \dfrac {\mathbb D\mathrm \xi}{x^2}[/math]
[math]\triangleleft[/math]

Следствие

Как следствие получим так называемое "правило трех сигм", которое означает, что вероятность случайной величины отличаться от своего математического ожидания более чем на три корня из дисперсии мала.

Утверждение:
Если [math]\mathbb E\mathrm \xi^2 \lt \mathcal {1}[/math], то [math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \leqslant 3\sqrt{ \mathbb D\mathrm \xi})\geqslant \dfrac {8}{9}[/math].
[math]\triangleright[/math]

Если в доказательстве неравенства Чебышева вместо [math] \geqslant [/math] поставить [math] \gt [/math] рассуждения не изменятся, так как для [math]x\gt 0[/math] неравенство [math]|\xi-\mathbb E\mathrm \xi| \gt x[/math] равносильно неравенству [math](\xi-\mathbb E\mathrm \xi)^2 \gt x^2[/math], поэтому:

[math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi|\gt 3\sqrt{\mathbb D\mathrm \xi})\leqslant \dfrac {\mathbb D\mathrm \xi}{(3\sqrt{\mathbb D\mathrm \xi})^2} = \dfrac {1} {9}[/math]
Отсюда заметим, что вероятность отклониться значению случайной величины от значения математического ожидания меньше чем [math]\dfrac {1}{9}[/math]
[math]\triangleleft[/math]

См. также

Источники информации