Изменения

Перейти к: навигация, поиск
Нет описания правки
}}
==Этапы доказательства неразрешимости десятой проблемы ГильбертаДиофантовы уравнения==
{{Определение
|definition='''Диофантово уравнение''' (англ. ''diophantine equation'') имеет вид
<tex>P(x_1\ldots x_n)=0</tex>, где <tex>P</tex> {{---}} многочлен с целыми коэффициентами. <tex>(1)</tex>
}}
=== Примеры диофантовых уравнений ===
Ниже приведены примеры наиболее известных частных случаев диофантовых уравнений:
*<tex>x^n + y^n = z^n</tex>,
:*при <tex>n=2</tex> решениями этого уравнения (обобщенного уравнения Пифагора) являются пифагоровы тройки,
:* согласно Великой теореме Ферма это уравнение не имеет ненулевых целых решений при <tex>n>2</tex>.
*уравнение Пелля;
: <tex>x^2 - n y^2 = 1</tex>, где параметр <tex>n</tex> не является точным квадратом;
*уравнение Каталана:
:<tex>x^z - y^t = 1</tex>, где <tex>z, t>1</tex>;
*уравнение Туэ:
: <tex>\sum_{i=0}^n a_i x^i y^{n-i} = c</tex> при <tex>n \geqslant 3</tex> и <tex>c\ne 0</tex>.
Диофант искал решение этих уравнений в рациональных числах, Гильберт спрашивал про решение диофантовых уравнений в целых числах.
В современной терминологии десятая проблема Гильберта является примером ''массовой проблемы'' <ref>Матиясевич Ю. В. Десятая проблема Гильберта. — М., Физматлит, 1993 {{---}} Математическая логика и основания математики {{---}} с.8</ref>. Массовая проблема состоит из счетного количества вопросов на каждый из которых нужно дать ответ {{---}} да или нет. В данном случае эти вопросы параметризуются диофантовыми уравнениями и нужно сказать: да, данное диофантово уравнение имеет решение или нет, данное уравнение не имеет решения. И суть массовой проблемы состоит в том, что нужно найти единый универсальный метод, который позволял бы ответить на любой из этих вопросов. Среди двадцати трех «Математических проблем» Гильберта десятая является единственной массовой проблемой и она может рассматриваться, как проблема информатики. Сегодня мы знаем, что десятая проблема Гильберта решения не имеет. Это означает, что она не разрешима, как массовая проблема.
==Теорема о неразрешимости десятой проблемы Гильберта==
{{Теорема
|author=Неразрешимость десятой проблемы Гильберта
}}
Таким образом, можно говорить об отрицательном решении десятой проблемы Гильберта.
Доказательство неразрешимости этой проблемы вытекает из тезиса Черча и следующих двух теорем:
{{Теорема
 
|statement=Существует перечислимое, но неразрешимое множество натуральных чисел <ref>[http://www.lirmm.fr/~ashen/part3.pdf Н. К. Верещагин, А. Шень, Вычислимые функции. {{---}} М. Издательство МЦНМО, 2008 {{---}} с.22]</ref>.}}
{{Теорема
|author=DPRM-теорема
|statement=Понятия «диофантово множество» и «перечислимое множество» совпадают.
}}
Аббревиатура в названии последней теоремы образована из первых букв фамилий математиков Мартина Девиса (англ. Martin ''Davis''), Хилари Патнэма (англ. ''Hilary Putnam''), Джулии Робинсон (англ. ''Julia Robinson'') и Юрия Матиясевича. Подробное доказательство неразрешимости десятой проблемы Гильберта можно прочитать здесь <ref>
Davis Martin Hilbert's tenth problem is unsolvable. {{---}} Amer. tex. Monthly., V.80, №3 1973 {{---}} p.233–269</ref> <ref>Манин Ю. И. Вычислимое и невычислимое. — М., Советское Радио, 1980 {{---}} c. 46-64</ref>.
 
Ниже приведены основные идеи доказательства неразрешимости проблемы существования решения диофантова уравнения в целых числах.
{|
| bgcolor="Lavender" | <font color="black"> Пусть дано множество <tex>M</tex> натуральных чисел и нужно найти алгоритм, который по каждому натуральному <tex>n</tex> определяет, принадлежит это <tex>n</tex> множеству <tex>M</tex> или нет.
|}
Во времена:В соответствии с тезисом Черча, когда Гильберт формулировал свои проблемы, не было общего определения понятия алгоритма, однако Гильберт был оптимистом в математике, верил в разрешимость этой проблемы, в этом смысле задача была сформулирована им вполне корректно. Задача о целых решениях произвольного уравнения сводится к задаче о целых неотрицательных решениях. Далее достаточно ограничиться диофантовыми уравнениями степени не выше четвертой. Для диофантовых уравнений степени не выше второй искомый общий метод был найден, однако уже для уравнений третьей степени эта задача казалась неразрешимой, возникло предположение,что тот общий метод, об отыскании которого говорится в формулировке Гильберта, попросту не такой алгоритм существует. Чтобы доказать не существование некого общего метода для решения серии задач, требовалось дать точное определение тому, что такое этот общий метод тогда и какими средствами он может быть реализован. Понятие алгоритма было сформулировано в тридцатые годы двадцатого века в работах матлогиков Черчатолько тогда, Клини, Тьюринга, Геделя. Важную роль в решении десятой проблемы Гильберта сыграл Эмиль Пост. Постом было впервые предложено общее понятие вычислимости, которое имеет фундаментальное значение для доказательства неразрешимости ряда проблем математики. В одной из своих работ он написал, что десятая проблема Гильберта «молит о доказательстве неразрешимости». Эти слова Поста вдохновили его молодого ученика Мартина Дэвиса, который смог сформулировать гипотезу, из которой следовала неразрешимость десятой проблемы Гильбертакогда множество <tex>M</tex> разрешимо. ===Некотрые определения и теорема==={{Определение
:Для отрицательного решения десятой проблемы Гильберта достаточно доказать диофантовость каждого [[Перечислимые языки|definitionперечислимого множества]], то есть по каждому перечислимому множеству <tex>M</tex> уметь строить такое диофантово уравнение, <tex>P(y,x_1\ldots x_k)=Множество 0</tex>, которое имело бы натуральные решения <tex>x_1\ldots x_k</tex> для всех <tex>y</tex>, принадлежащих <tex>M</tex> натуральных чисел называется перечислимым, если оно совпадает со множеством значений некоторой примитивно-рекурсивной функциии только для таких <tex>y</tex>.}}{{Определение
:Тогда, взяв в качестве <tex>M</tex> перечислимое, но [[Разрешимые (рекурсивные) языки # Примеры неразрешимых множеств |definitionнеразрешимое множество]], можно было бы получить, что для соответствующего уравнения <tex>P(y,x_1\ldots x_k)=Множество 0</tex>Mнет общего алгоритма, который по каждому натуральному <tex>y</tex> называется разрешимымдавал бы ответ на вопрос о существовании у этого уравнения натуральных решений. Если бы этот алгоритм существовал, то можно было бы за конечное число шагов узнать, если оно перечислимо вместе со своим дополнением имеет ли уравнение <tex>P(0,x_1\mathbb N-ldots x_k)=0</tex> решение, то есть принадлежит ли число <tex>0</tex> множеству <tex>M</tex>, где имеет ли уравнение <tex>P(1,x_1\mathbb Nldots x_k)=0</tex> {{---}} множество всех натуральных чиселрешение и так далее. Получилось бы, что существует алгоритм, который по каждому натуральному <tex>y</tex> за конечное число шагов определяет, принадлежит <tex>y</tex> множеству <tex>M</tex> или нет.}}{{Теорема
|statement=Существует перечислимое, но неразрешимое множество натуральных чисел.}}Пусть дано множество <tex>M</tex> натуральных чисел и нужно найти алгоритм, который по каждому натуральному <tex>n</tex> определяет, принадлежит это <tex>n</tex> множеству <tex>M</tex> или нет.Такой алгоритм существует тогда и только тогда, когда множество <tex>M</tex> разрешимо. Для отрицательного решения десятой проблемы Гильберта достаточно было доказать диофантовость каждого перечислимого множества, то есть по каждому перечислимому множеству <tex>M</tex> уметь строить такое диофантово уравнение, <tex>P(y,x_1\ldots x_k)=0</tex>, которое имело бы натуральные решения <tex>x_1\ldots x_k</tex> для всех <tex>y</tex>, принадлежащих <tex>M</tex> и только для таких <tex>y</tex>. Тогда, взяв в качестве <tex>M</tex> перечислимое, но неразрешимое множество, можно было бы получить, что для соответствующего уравнения <tex>P(y,x_1\ldots x_k)=0</tex> нет общего алгоритма, который по каждому натуральному <tex>y</tex> давал бы ответ на вопрос о существовании у этого уравнения натуральных решений. Если бы этот алгоритм существовал, то можно было бы за конечное число шагов узнать, имеет ли уравнение <tex>P(0,x_1\ldots x_k)=0</tex> решение, то есть принадлежит ли число <tex>0</tex> множеству <tex>M</tex>, имеет ли уравнение <tex>P(1,x_1\ldots x_k)=0</tex> решение и так далее. Получилось бы, что существует алгоритм, который по каждому натуральному <tex>y</tex> за конечное число шагов определяет, принадлежит <tex>y</tex> множеству <tex>M</tex> или нет. :Тогда, в соответствии с тезисом Черча, множество <tex>M</tex> было бы разрешимымвопреки выбору этого множества.
==Этапы доказательства DPRM-теоремы=====Гипотеза и нормальная форма Мартина Дэвиса===М. Дэвис перешёл от формулировки десятой проблемы Гильберта в целых числах к естественной для теории алгоритмов формулировке в целых неотрицательных числах. Для конкретного диофантова уравнения задача о нахождении целочисленных решений и задача о нахождении решений в целых неотрицательных числах — это, вообще говоря, {{---}} разные задачи. Однако если мы интересуемся сразу всеми уравнениями (как, например, в 10-й проблеме Гильберта), то эти две задачи совпадают. Действительно, если рассмотреть систему уравнений <tex>(2)</tex>
<tex> \left\{ \begin{array}{lcr}P(x_1\ldots x_n)=0; \\ x_1=y_{1,\;1}^2+y_{1,\;2}^2+y_{1,\;3}^2+y_{1,\;4}^2;\\\ldots \\\ldots \\x_n=y_{n,\;1}^2+y_{n,\;2}^2+y_{n,\;3}^2+y_{n,\;4}^2
Такие множества называются ''диофантовыми''.
Исследования Мартина Дэвиса, направленные на доказательство неразрешимости десятой проблемы Гильберта, привели его к постановке задачи, когда описано некоторое множество и требуется узнать, является ли оно диофантовым. В простейших случаях диофантовость множества очевидна {{---}} ясно, например, что диофантовым является множество всех положительных нечетных чисел. Однако совсем нелегко ответить на такие естественные вопросы, как : «диофантово ли множество всех степеней числа <tex>2</tex>?», «диофантово ли множество всех простых чисел?», «диофантово ли множество всех совершенных чисел?» С первого взгляда кажется, что на эти вопросы следует дать отрицательный ответ. Тем не менее все эти множества являются диофантовыми. Приведем примеры диофантовых множеств:
*множество всех полных квадратов, представлено уравнением <tex>a-x^2=0</tex>;
*множество всех составных чисел, представлено уравнением <tex>a-(x_1+2)(x_2+2)=0</tex>;
|statement=Понятия диофантового и перечислимого множества совпадают. Это значит, что множество диофантово тогда и только тогда, когда оно перечислимо.
}}
Также Дэвис доказалДоказать гипотезу Дэвису не удалось, но он получил близкий к доказательству результат, показав <ref>[http://www.jstor.org/stable/2266325?seq=1#page_scan_tab_contents M. Davis. Arithmetical problems and recursively enumerable predicates. {{---}} The Journal of Symbolic Logic 18 (1), 1953 {{---}} p. 33–41]</ref>, что любое перечислимое множество можно представить в виде, названном ''нормальной формой Дэвиса'':
<tex>\left \langle a_1, a_2, \ldots , a_m\right \rangle\in\mathbb{M}\Leftrightarrow \exists z \quad \forall y < z \quad \exists x_1, x_2,\ldots , x_n\</tex>
===Предикат Робинсон. Совместный результат М. Дэвиса и Х. Патнема и Д. Робинсон.===
Основополагающий вклад в решение десятой проблемы Гильберта внесла американский математик Джулия Робинсон. Ее учитель, Альфред Тарский, предположил, что даже множество всех степеней числа <tex>2</tex> не является диофантовым. Джулия Робинсон исследовала вопрос о том, является ли диофантовым множество, состоящее из троек :
<tex>\left \langle a, b, c= a^b\right \rangle</tex>
где <tex>E_1</tex> и <tex>E_2</tex> — выражения, построенные из <tex>x_1, x_2,\ldots , x_m</tex> и конкретных натуральных чисел с помощью сложения, умножения и возведения в степень.
В 1961 году в совместной работе Робинсон, Дэвиса и Патмена <ref>Martin Davis, Hilary Putnam, Julia Robinson The decision problem for exponential Diophantine equations. {{---}} Annals of Mathematics — 1961. — Vol. 74, № 3 — p. 425—436</ref> было получено экспоненциально - диофантово представление для любого перечислимого множества:
<tex>\left \langle a_1, a_2, \ldots , a_m\right \rangle\in\mathbb{M}\Leftrightarrow \exists x_1, x_2,\ldots , x_n\</tex>
*недопускающее решение с <tex>a>b^b</tex>;
*для каждого <tex>k</tex> имеющее решение с <tex>a>b^k</tex>.
 
=== Вклад Ю.В. Матиясевича===
Такого рода уравнение удалось построить Ю.В. Матеясевичу в 1970 году. Обратившись к рассмотрению последовательности Фибоначчи, Матиясевич заметил, что если за <tex>b</tex> взять половину номера четного члена последовательности Фибоначчи, а за <tex>a</tex> — сам член, то неравенство <tex>a>b^b</tex> будет всегда неверно;
Если возвести обе части всех этих уравнений в квадрат и сложить их почленно, то получиться одно уравнение, которое будет иметь те же решения на множестве натуральных чисел, что и вся система.  В результате совместной работы Дэвиса, Робинсон, Патнема, Матиясевича было доказано, что по заданию перечислимого множества в любой стандартнойформе можно построить его диофантово представление:* построить арифметическую формулу со многими ограниченными кванторами общности;* преобразовать эту формулу в нормальную форму Дейвиса с одним ограниченным квантором общности; * устранить этот ограниченный квантор общности ценой перехода к экспоненциально-диофантовым уравнениям;* устранить возведение в степень. Таким образом, теорема о неразрешимости десятой проблемы Гильберта была доказанаправильность гипотезы Мартина Дэвиса, которая стала называться DPRM-теоремой. Из этой теоремы следует, что десятая проблема Гиль­берта является неразрешимой.
== См. также ==
* [[Примеры неразрешимых задач: однозначность грамматики|Однозначность грамматики]]
* [[Неразрешимость задачи об эквивалентности КС-грамматик]]
== Примечания ==
<references />
==Источники информации==
*Матиясевич Ю.В. Десятая проблема Гильберта. — М.: , Физматлит, 1993. - Математическая логика и основания математики.*Проблемы Гильберта, . Сборник под редакцией П. С. Александрова, М., Наука, 1969 г.*Ю. В. Матиясевич. Диофантовы множества. — УМН, 1972, том 27, выпуск 5(167), с. 185–222*[http://kvant.ras.ru/1970/07/o_reshenii_desyatoj_problemy_g.htm П. Варпаховский, А. Н. Колмогоров О решении десятой проблемы Гильберта // , журнал Квант. — 1970. — № 7. — С. 38—44.]
*[https://www.lektorium.tv/lecture/12974 Лекции Ю.В. Матиясевича в Computer Science клубе при ПОМИ РАН]
[[Категория: Теория формальных языков]]
[[Категория: Теория вычислимости]]
[[Категория: Примеры неразрешимых задач]]
Анонимный участник

Навигация