Изменения

Перейти к: навигация, поиск
Нет описания правки
<tex>P(x_1\ldots x_n)=0</tex>, где <tex>P</tex> {{---}} многочлен с целыми коэффициентами. <tex>(1)</tex>
}}
=== Примеры диофантовых уравнений ===Ниже приведены примеры наиболее известных частных случаев диофантовых уравнений:* <tex>x^n + y^n = z^n</tex>,:** При при <tex>n=2</tex> решениями этого уравнения (обобщенного уравнения Пифагора) являются пифагоровы тройки.,*:* согласно Великой теореме Ферма это уравнение не имеет ненулевых целых решений при <tex>n>2</tex>.* уравнение Пелля;: <tex>x^2 - n y^2 = 1</tex>, где параметр <tex>n</tex> не является точным квадратом ;*уравнение Пелля.Каталана:* :<tex>x^z - y^t = 1</tex>, где <tex>z, t>1</tex>, — ;*уравнение Каталана.Туэ:* : <tex>\sum_{i=0}^n a_i x^i y^{n-i} = c</tex> при <tex>n\ge geqslant 3</tex> и <tex>c\ne 0</tex> — уравнение Туэ.
Диофант искал решение этих уравнений в рациональных числах, Гильберт спрашивал про решение диофантовых уравнений в целых числах.
В современной терминологии десятая проблема Гильберта является примером ''массовой проблемы''<ref>Матиясевич Ю.В. Десятая проблема Гильберта. — М.: , Физматлит, 1993. {{--- }} Математическая логика и основания математики, {{---}} с.8.</ref>. Массовая проблема состоит из счетного количества вопросов на каждый из которых нужно дать ответ {{---}} да или нет. В данном случае эти вопросы параметризуются диофантовыми уравнениями и нужно сказать: да, данное диофантово уравнение имеет решение или нет, данное уравнение не имеет решения. И суть массовой проблемы состоит в том, что нужно найти единый универсальный метод, который позволял бы ответить на любой из этих вопросов. Среди двадцати трех «Математических проблем» Гильберта десятая является единственной массовой проблемой и она может рассматриваться, как проблема информатики. Сегодня мы знаем, что десятая проблема Гильберта решения не имеет. Это означает, что она не разрешима, как массовая проблема.
==Теорема о неразрешимости десятой проблемы Гильберта==
{{Теорема
|author=Неразрешимость десятой проблемы Гильберта
{{Теорема
|statement=Существует перечислимое, но неразрешимое множество натуральных чисел<ref>[http://www.lirmm.fr/~ashen/part3.pdf Н. К. Верещагин, А. Шень, Вычислимые функции. {{---}} М. Издательство МЦНМО, 2008 {{---}} с.22]</ref>.}}
{{Теорема
|author=DPRM-теорема
}}
Аббревиатура в названии последней теоремы образована из первых букв фамилий математиков Мартина Девиса (англ. Martin ''Davis''), Хилари Патнэма (англ. ''Hilary Putnam''), Джулии Робинсон (англ. ''Julia Robinson'') и Юрия Матиясевича. Подробное доказательство неразрешимости десятой проблемы Гильберта можно прочитать здесь <ref>
Davis Martin Hilbert's tenth problem is unsolvable . {{---}} Amer. tex. Monthly., V.80, №3 1973,{{---}} p. 233–269.</ref>. Пусть дано множество <tex>M</tex> натуральных чисел и нужно найти алгоритм, который по каждому натуральному <tex>n</texref> определяет, принадлежит это <tex>n</tex> множеству <tex>M</tex> или нетМанин Ю.Такой алгоритм существует тогда и только тогда, когда множество <tex>M</tex> разрешимоИ. Для отрицательного решения десятой проблемы Гильберта достаточно было доказать диофантовость каждого перечислимого множества, то есть по каждому перечислимому множеству <tex>M</tex> уметь строить такое диофантово уравнение, <tex>P(y,x_1\ldots x_k)=0</tex>, которое имело бы натуральные решения <tex>x_1\ldots x_k</tex> для всех <tex>y</tex>, принадлежащих <tex>M</tex> Вычислимое и только для таких <tex>y</tex>. Тогда, взяв в качестве <tex>M</tex> перечислимое, но неразрешимое множество, можно было бы получить, что для соответствующего уравнения <tex>P(y,x_1\ldots x_k)=0</tex> нет общего алгоритма, который по каждому натуральному <tex>y</tex> давал бы ответ на вопрос о существовании у этого уравнения натуральных решенийневычислимое. Если бы этот алгоритм существовал, то можно было бы за конечное число шагов узнать, имеет ли уравнение <tex>P(0,x_1\ldots x_k)=0</tex> решение, то есть принадлежит ли число <tex>0</tex> множеству <tex>M</tex>, имеет ли уравнение <tex>P(1,x_1\ldots x_k)=0</tex> решение и так далее— М. Получилось бы, что существует алгоритмСоветское Радио, который по каждому натуральному <tex>y</tex> за конечное число шагов определяет, принадлежит <tex>y</tex> множеству <tex>M</tex> или нет1980 {{---}} c. Тогда, в соответствии с тезисом Черча, множество <tex>M46-64</texref> было бы разрешимым вопреки выбору этого множества.
Ниже приведены основные идеи доказательства неразрешимости проблемы существования решения диофантова уравнения в целых числах. {| | bgcolor="Lavender" | <font color=Этапы доказательства неразрешимости "black"> Пусть дано множество <tex>M</tex> натуральных чисел и нужно найти алгоритм, который по каждому натуральному <tex>n</tex> определяет, принадлежит это <tex>n</tex> множеству <tex>M</tex> или нет.|} :В соответствии с тезисом Черча, такой алгоритм существует тогда и только тогда, когда множество <tex>M</tex> разрешимо.  :Для отрицательного решения десятой проблемы Гильбертадостаточно доказать диофантовость каждого [[Перечислимые языки|перечислимого множества]], то есть по каждому перечислимому множеству <tex>M</tex> уметь строить такое диофантово уравнение, <tex>P(y,x_1\ldots x_k)=0</tex>, которое имело бы натуральные решения <tex>x_1\ldots x_k</tex> для всех <tex>y</tex>, принадлежащих <tex>M</tex> и только для таких <tex>y</tex>.  :Тогда, взяв в качестве <tex>M</tex> перечислимое, но [[Разрешимые (рекурсивные) языки # Примеры неразрешимых множеств | неразрешимое множество]], можно было бы получить, что для соответствующего уравнения <tex>P(y,x_1\ldots x_k)=0</tex> нет общего алгоритма, который по каждому натуральному <tex>y</tex> давал бы ответ на вопрос о существовании у этого уравнения натуральных решений. Если бы этот алгоритм существовал, то можно было бы за конечное число шагов узнать, имеет ли уравнение <tex>P(0,x_1\ldots x_k)=0</tex> решение, то есть принадлежит ли число <tex>0</tex> множеству <tex>M</tex>, имеет ли уравнение <tex>P(1,x_1\ldots x_k)=0</tex> решение и так далее. Получилось бы, что существует алгоритм, который по каждому натуральному <tex>y</tex> за конечное число шагов определяет, принадлежит <tex>y</tex> множеству <tex>M</tex> или нет. :Тогда, в соответствии с тезисом Черча, множество <tex>M</tex> было бы разрешимым вопреки выбору этого множества. ==Этапы доказательства DPRM-теоремы=====Гипотеза и нормальная форма Мартина Дэвиса===М. Дэвис перешёл от формулировки десятой проблемы Гильберта в целых числах к естественной для теории алгоритмов формулировке в целых неотрицательных числах.
Для конкретного диофантова уравнения задача о нахождении целочисленных решений и задача о нахождении решений в целых неотрицательных числах {{---}} разные задачи. Однако если мы интересуемся сразу всеми уравнениями (как, например, в 10-й проблеме Гильберта), то эти две задачи совпадают. Действительно, если рассмотреть систему уравнений <tex>(2)</tex>
|statement=Понятия диофантового и перечислимого множества совпадают. Это значит, что множество диофантово тогда и только тогда, когда оно перечислимо.
}}
Также Дэвис доказалДоказать гипотезу Дэвису не удалось, но он получил близкий к доказательству результат, показав <ref>[http://www.jstor.org/stable/2266325?seq=1#page_scan_tab_contents M. Davis. Arithmetical problems and recursively enumerable predicates. {{---}} The Journal of Symbolic Logic 18 (1), 1953 {{---}} p. 33–41]</ref>, что любое перечислимое множество можно представить в виде, названном ''нормальной формой Дэвиса'':
<tex>\left \langle a_1, a_2, \ldots , a_m\right \rangle\in\mathbb{M}\Leftrightarrow \exists z \quad \forall y < z \quad \exists x_1, x_2,\ldots , x_n\</tex>
===Предикат Робинсон. Совместный результат М. Дэвиса и Х. Патнема и Д. Робинсон.===
Основополагающий вклад в решение десятой проблемы Гильберта внесла американский математик Джулия Робинсон. Ее учитель, Альфред Тарский, предположил, что даже множество всех степеней числа <tex>2</tex> не является диофантовым. Джулия Робинсон исследовала вопрос о том, является ли диофантовым множество, состоящее из троек :
<tex>\left \langle a, b, c= a^b\right \rangle</tex>
где <tex>E_1</tex> и <tex>E_2</tex> — выражения, построенные из <tex>x_1, x_2,\ldots , x_m</tex> и конкретных натуральных чисел с помощью сложения, умножения и возведения в степень.
В 1961 году в совместной работе Робинсон, Дэвиса и Патмена <ref>Martin Davis, Hilary Putnam, Julia Robinson The decision problem for exponential Diophantine equations. {{---}} Annals of Mathematics — 1961. — Vol. 74, № 3 — p. 425—436</ref> было получено экспоненциально - диофантово представление для любого перечислимого множества:
<tex>\left \langle a_1, a_2, \ldots , a_m\right \rangle\in\mathbb{M}\Leftrightarrow \exists x_1, x_2,\ldots , x_n\</tex>
*недопускающее решение с <tex>a>b^b</tex>;
*для каждого <tex>k</tex> имеющее решение с <tex>a>b^k</tex>.
 
=== Вклад Ю.В. Матиясевича===
Такого рода уравнение удалось построить Ю.В. Матеясевичу в 1970 году. Обратившись к рассмотрению последовательности Фибоначчи, Матиясевич заметил, что если за <tex>b</tex> взять половину номера четного члена последовательности Фибоначчи, а за <tex>a</tex> — сам член, то неравенство <tex>a>b^b</tex> будет всегда неверно;
Если возвести обе части всех этих уравнений в квадрат и сложить их почленно, то получиться одно уравнение, которое будет иметь те же решения на множестве натуральных чисел, что и вся система.  В результате совместной работы Дэвиса, Робинсон, Патнема, Матиясевича было доказано, что по заданию перечислимого множества в любой стандартнойформе можно построить его диофантово представление:* построить арифметическую формулу со многими ограниченными кванторами общности;* преобразовать эту формулу в нормальную форму Дейвиса с одним ограниченным квантором общности; * устранить этот ограниченный квантор общности ценой перехода к экспоненциально-диофантовым уравнениям;* устранить возведение в степень. Таким образом, теорема о неразрешимости десятой проблемы Гильберта была доказанаправильность гипотезы Мартина Дэвиса, которая стала называться DPRM-теоремой. Из этой теоремы следует, что десятая проблема Гиль­берта является неразрешимой.
== См. также ==
<references />
==Источники информации==
*Матиясевич Ю.В. Десятая проблема Гильберта. — М.: , Физматлит, 1993. - Математическая логика и основания математики.*Проблемы Гильберта, . Сборник под редакцией П. С. Александрова, М., Наука, 1969 г.*Ю. В. Матиясевич. Диофантовы множества. — УМН, 1972, том 27, выпуск 5(167), с. 185–222*[http://kvant.ras.ru/1970/07/o_reshenii_desyatoj_problemy_g.htm П. Варпаховский, А. Н. Колмогоров О решении десятой проблемы Гильберта // , журнал Квант. — 1970. — № 7. — С. 38—44.]
*[https://www.lektorium.tv/lecture/12974 Лекции Ю.В. Матиясевича в Computer Science клубе при ПОМИ РАН]
[[Категория: Теория формальных языков]]
[[Категория: Теория вычислимости]]
[[Категория: Примеры неразрешимых задач]]
Анонимный участник

Навигация