Изменения

Перейти к: навигация, поиск

Нормированные пространства

281 байт убрано, 03:04, 12 июня 2011
м
перенес информацию об определении предела повыше, так логичнее
== Арифметика пределов ==
Пределы отображений в В нормированных пространствах определяются точно так жеопределение предела записывается аналогично пределу вещественной последовательности, как отличаясь лишь заменой знака модуля на знак нормы. Например, если <tex>E \subset X</tex>, <tex>a</tex> — предельная точка множества <tex>E</tex>, <tex>f \colon E \to Y</tex> (где <tex>X</tex> и в метрических пространствах<tex>Y</tex> — нормированные пространства), то <tex>A</tex> называется пределом функции <tex>f</tex> при <tex>x \rightarrow a</tex> и обозначается <tex>\lim\limits_{x \rightarrow a} f(x)</tex>, если для любого положительного <tex>\varepsilon</tex> найдётся <tex>\delta > 0</tex>, только расстояние заменяется на нормудля которого выполняется следствие <tex>0 < \|x - a\| < \delta \Rightarrow \|f(x) - A\| < \varepsilon</tex>.
Специфика нормированных пространств — структура линейного пространства на рассматриваемом множестве. То есть, точки пространства можно складывать и умножать на числа, и эти операции будут непрерывными по норме пространства.
Рассмотренные ранее пространства <tex>\mathbb R</tex>, <tex>C[0; 1]</tex> являются B-пространствами, <tex>\widetilde{L_1}[0; 1]</tex> B-пространством не является. Доказательства полноты <tex>\mathbb R^n</tex> и <tex>C[0; 1]</tex> будут даны далее.
 
В нормированных пространствах определение предела записывается аналогично пределу вещественной последовательности, отличаясь лишь заменой знака модуля на знак нормы.
 
Например, если <tex>E \subset X</tex>, <tex>a</tex> — предельная точка множества <tex>E</tex>, <tex>f \colon E \to Y</tex> (где <tex>X</tex> и <tex>Y</tex> — нормированные пространства), то <tex>A</tex> называется пределом функции <tex>f</tex> при <tex>x \rightarrow a</tex> и обозначается <tex>\lim\limits_{x \rightarrow a} f(x)</tex>, если для любого положительного <tex>\varepsilon</tex> найдётся <tex>\delta > 0</tex>, для которого выполняется следствие <tex>0 < \|x - a\| < \delta \Rightarrow \|f(x) - A\| < \varepsilon</tex>.
Также в нормированных пространствах можно рассматривать ряды, понимая под рядом, например, предел частичных сумм. Другие методы суммирования также можно перенести на нормированные пространства (метод средних арифметических или метод Абеля).
689
правок

Навигация