Редактирование: Обсуждение:Компактный оператор

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 3: Строка 3:
 
: Что такое "вполне ограниченный оператор"? В Википедии компактный оператор называется также вполне непрерывным ([http://ru.wikipedia.org/wiki/Компактный_оператор]) --[[Участник:Sementry|Мейнстер Д.]] 17:08, 9 июня 2013 (GST)
 
: Что такое "вполне ограниченный оператор"? В Википедии компактный оператор называется также вполне непрерывным ([http://ru.wikipedia.org/wiki/Компактный_оператор]) --[[Участник:Sementry|Мейнстер Д.]] 17:08, 9 июня 2013 (GST)
 
:: ой, это я хотел "вполне непрерывный" написать, да. В википедии да, а в конспекте дается определение компактного, а в последней лекции — определение вполне непрерывного --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:28, 9 июня 2013 (GST)
 
:: ой, это я хотел "вполне непрерывный" написать, да. В википедии да, а в конспекте дается определение компактного, а в последней лекции — определение вполне непрерывного --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:28, 9 июня 2013 (GST)
 
 
Верно ли, что любое относительно компактное множество замкнуто? (для компакта это вроде как так)
 
 
В теореме про суперпозицию функций есть непонятный момент: <tex>W = A(V)</tex> - относительно компактно, т.к. А - компактный. Почему у W существует конечная <tex>\varepsilon</tex> - сеть?
 
 
В обратную сторону пока тоже не совсем понятно, как доказывать
 
 
 
 
И почему единичный оператор компактен в конечномерном случае?
 
если подействовать им на мн-во рациональных чисел, получится оно же. Но как бы не является компактом(и , наверное, относительно компактным, хз что такое замыкание <tex>\mathbb R</tex>)
 
 
== Онтосительная компактность => Сепарабельность ==
 
 
* "Используя теорему Хаусдорфа ..." — там <tex>\varepsilon = \frac1n </tex> что ли? --[[Участник:Rybak|Андрей Рыбак]] 21:15, 10 июня 2013 (GST)
 
** исправил --[[Участник:Rybak|Андрей Рыбак]] 21:19, 10 июня 2013 (GST)
 
 
== Компактность сопряженного оператора ==
 
В текущем доказательстве шизофрения, <tex> \{ \varphi_n \} </tex> — последовательность непрерывных функционалов на <tex> F </tex>, а не на <tex> \mathbb R </tex> или каком-то отрезке, теоремой Арцела-Асколи пользоваться нельзя. --[[Участник:Sementry|Мейнстер Д.]] 12:39, 12 июня 2013 (GST)
 
: UPD: в Люстернике-Соболеве такое же доказательство, идет ссылка на обобщение теоремы Арцела-Асколи, которое нигде не доказано, грусть-печаль. --[[Участник:Sementry|Мейнстер Д.]] 12:43, 12 июня 2013 (GST)
 
:: Додонов про эту лемму говорил, что забить, что не доказано. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 13:06, 12 июня 2013 (GST)
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)