Обсуждение:Метрическое пространство — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
 
(не показано 7 промежуточных версий 5 участников)
Строка 2: Строка 2:
  
 
==Замкнутые множества==
 
==Замкнутые множества==
Класс открытых множеств обозначается <tex> \tau </tex>. А никто не знает, как класс закрытых обозначается? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 23:59, 21 ноября 2010 (UTC)
+
* Класс открытых множеств обозначается <tex> \tau </tex>. А никто не знает, как класс закрытых обозначается? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 23:59, 21 ноября 2010 (UTC)
 +
** Мы никак не обозначали, но можно, например, так:  <tex> \bar\tau </tex>
  
 
==Основное характеристическое свойство замкнутых множеств==
 
==Основное характеристическое свойство замкнутых множеств==
Строка 19: Строка 20:
 
=== Свойства замкнутых множеств ===
 
=== Свойства замкнутых множеств ===
 
# <tex> X, \varnothing </tex> {{---}} замкнуты
 
# <tex> X, \varnothing </tex> {{---}} замкнуты
# Если <tex>\ F_{\alpha} </tex> {{---}} замкнуто <tex>\forall \alpha \in A </tex>, то <tex>\bigcap\limits_{\alpha \in A} F_{\alpha} </tex> {{---}} замкнуто  
+
# <tex>\ F_{\alpha} </tex> {{---}} замкнуто <tex>\forall \alpha \in A \Rightarrow \bigcap\limits_{\alpha \in A} F_{\alpha} </tex> {{---}} замкнуто  
# Если <tex>\  F_1 \dots F_n </tex> {{---}} замкнуты, то <tex> \Rightarrow \bigcup\limits_{j = 1}^n F_j </tex> {{---}} замкнуто
+
# <tex>\  F_1 \dots F_n </tex> {{---}} замкнуты <tex> \Rightarrow \bigcup\limits_{j = 1}^n F_j </tex> {{---}} замкнуто
  
 
Вроде бы все логично и напрямую следует из законов Де Моргана. В статью пока не впиливаю, потому что в конспекте на эту тему у меня какой-то бред.--[[Участник:Sementry|Мейнстер Д.]] 20:43, 4 января 2011 (UTC)
 
Вроде бы все логично и напрямую следует из законов Де Моргана. В статью пока не впиливаю, потому что в конспекте на эту тему у меня какой-то бред.--[[Участник:Sementry|Мейнстер Д.]] 20:43, 4 января 2011 (UTC)
 +
 +
Основное характеристическое свойство замкнутых множеств:
 +
Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто.
 +
F — замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей.
 +
А это не одно и то же?--[[Участник:Geralt|Завадский Д.]] 18:16, 20 января 2011
 +
* Нет, это в прямую и обратную сторону. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 23:41, 20 января 2011 (UTC)
 +
* У тебя это одно и тоже, но в Вики вообще-то написано по-другому [[Участник:Dmitriy D.|Dmitriy D.]] 00:02, 21 января 2011 (UTC)
 +
**Просто уже заменили--[[Участник:Geralt|Завадский Д.]] 22:35, 21 января 2011 (UTC)

Текущая версия на 06:36, 22 января 2011

Используйте шаблон для тире — {{---}} вместо "-" там, где это необходимо Rybak 04:10, 21 ноября 2010 (UTC)

Замкнутые множества

  • Класс открытых множеств обозначается [math] \tau [/math]. А никто не знает, как класс закрытых обозначается? --Дмитрий Герасимов 23:59, 21 ноября 2010 (UTC)
    • Мы никак не обозначали, но можно, например, так: [math] \bar\tau [/math]

Основное характеристическое свойство замкнутых множеств

В обратную сторону печаль с доказательством. А везде в интернетах и умных книжках, наоборот, сначала говорится что замкнутое множество - то, которое содержит в себе пределы всех своих сходящихся последовательностей, а потом уже доказывается что дополнение к замкнутому - открытое и наоборот. Надо, наверное, подойти к Додонову и спросить что он считает по этому поводу.


В доказательстве осталась небольшая проблема: мы говорим, что

"каждый [math] y \notin F [/math] входит в [math] G [/math] вместе с каким-то открытым шаром"

При этом [math]y[/math], вообще говоря, не обязан быть центром шара, однако далее в доказательстве это подразумевается. Лечится это очень просто, достаточно сказать, что если [math]y[/math] лежит в некотором шаре [math]V_1(x)_{r_1}[/math], то существует шар [math]V_2(y)_{r_2} \subset V_1[/math] (надо положить [math]r_2 \lt r_1 - \rho(x, y)[/math]). Возможно даже, что этот факт уже доказан в статье, но пояснить этот момент в любом случае стоит.


По поводу свойств открытых и замкнутых множеств: почему все [math] X [/math] открыто, понятно, мы можем представить его как [math] \bigcup\limits_{x \in X} V{_r}(x) (r \gt 0) [/math]. А почему пустое множество является открытым, типа, это пустое объединение? Далее, раз уж класс замкнутых множеств обладает двойственными свойствами по отношению к классу открытых, то, наверное, свойства будут выглядеть так:

Свойства замкнутых множеств

  1. [math] X, \varnothing [/math] — замкнуты
  2. [math]\ F_{\alpha} [/math] — замкнуто [math]\forall \alpha \in A \Rightarrow \bigcap\limits_{\alpha \in A} F_{\alpha} [/math] — замкнуто
  3. [math]\ F_1 \dots F_n [/math] — замкнуты [math] \Rightarrow \bigcup\limits_{j = 1}^n F_j [/math] — замкнуто

Вроде бы все логично и напрямую следует из законов Де Моргана. В статью пока не впиливаю, потому что в конспекте на эту тему у меня какой-то бред.--Мейнстер Д. 20:43, 4 января 2011 (UTC)

Основное характеристическое свойство замкнутых множеств: Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто. F — замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей. А это не одно и то же?--Завадский Д. 18:16, 20 января 2011

  • Нет, это в прямую и обратную сторону. --Дмитрий Герасимов 23:41, 20 января 2011 (UTC)
  • У тебя это одно и тоже, но в Вики вообще-то написано по-другому Dmitriy D. 00:02, 21 января 2011 (UTC)