Изменения

Перейти к: навигация, поиск

Обсуждение:Теорема Жордана

269 байт добавлено, 16:48, 27 июня 2012
Нет описания правки
В первом утверждении бред на бреде и бредом погоняет. В условии — суммы Фейера, а в доказательстве — частичные суммы. Рассматривается норма функции, не являющейся непрерывной, в пространстве непрерывных функций. Полиномом наилучшего приближения <tex> f </tex> в <tex> C </tex> является обычный полином, а не тригонометрический, соответственно, теорема Вейерштрасса для него неприменима. Переход от модуля к норме тоже какой-то мутный. Что делать будем? --[[Участник:Sementry|Мейнстер Д.]] 20:03, 26 июня 2012 (GST)
: \sigma (f) — ряд Фурье, а не суммы Фейера. И Виталя с Артемом говорят, что то, что мы берем норму || ||_C у функции не в C — это нормально.--[[Участник:Dgerasimov|Дмитрий Герасимов]] 20:40, 26 июня 2012 (GST)
:: Ладно, сейчас перечитал, похоже, доказательство корректное, хоть и очень кривое. Но норма в <tex> C </tex> реально сбивает с толку, с этим нужно что-то сделать. Если успею, еще вернусь сюда и переделаю. --[[Участник:Sementry|Мейнстер Д.]] 17:48, 27 июня 2012 (GST)
Ребят, мне кажется, или доказательство утверждения про равномерную сходимость ряда фурье нифига не расписано? --[[Участник:System29a|System29a]] 21:07, 26 июня 2012 (GST)
формулировка какая-то мутная
{{Теорема
|statement=
Пусть <tex>f\in CV </tex> (<tex> f </tex> — непрерывная, ограниченной вариации). Тогда <tex> \forall x: f</tex> раскладывается в равномерно сходящийся ряд Фурье.
|proof=
Применим прошлую теорему. Получим, что сходится к числу <tex>\frac{f(x+0)+f(x-0)}{2}</tex>.
 
Так как функция непрерывна, <tex>f(x+0)=f(x-0)</tex>.
}}
что значит <tex> \forall x: f</tex>? кроме того, указано, что ряд фурье равномерно сходится, но не указано, на каком промежутке.[[Участник:Glukos|Иван Раков]] 21:40, 26 июня 2012 (GST)
689
правок

Навигация