Редактирование: Обсуждение участника:178.70.143.94
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <tex dpi="130">CONN_{n}</tex> - количество связных графов | + | <tex dpi="130">CONN_{n}</tex> - количество связных графов порядка <tex dpi="130">n</tex>. |
}} | }} | ||
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | <tex dpi="150"> | + | Количество помеченных графов порядка <tex dpi="150">n</tex> равно <tex dpi="150">2^{\binom{n}{2}}</tex>. Обозначается как <tex dpi="150">G_{n}</tex>. |
}} | }} | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | <tex dpi="150">CONN_{n}=G_{n} - \frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}G_{n-k}CONN_{k}</tex>, {{---}} количество связных графов | + | <tex dpi="150">CONN_{n}=G_{n} - \frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}G_{n-k}CONN_{k}</tex>, {{---}} количество связных графов порядка n. |
|proof= | |proof= | ||
Рассмотрим соотношение количества связных и несвязных графов. Очевидно, что <tex dpi="150">CONN_{n}=G_{n}-X_{n}</tex>, где <tex dpi="150">X_{n}</tex> {{---}} количество несвязных графов. Также <tex dpi="150">X_{n}=\dfrac{Y_{n}}{n}</tex>, где <tex dpi="150">Y_{n}</tex> {{---}} количество корневых<ref>[[wikipedia:Rooted_graph | Wikipedia {{---}} Корневой граф]]</ref> несвязных графов. | Рассмотрим соотношение количества связных и несвязных графов. Очевидно, что <tex dpi="150">CONN_{n}=G_{n}-X_{n}</tex>, где <tex dpi="150">X_{n}</tex> {{---}} количество несвязных графов. Также <tex dpi="150">X_{n}=\dfrac{Y_{n}}{n}</tex>, где <tex dpi="150">Y_{n}</tex> {{---}} количество корневых<ref>[[wikipedia:Rooted_graph | Wikipedia {{---}} Корневой граф]]</ref> несвязных графов. | ||
− | Вычислим <tex dpi="150">Y_{n}</tex>. Заметим, что, так как граф является несвязным, то в нём найдётся компонента связности, внутри которой лежит корневая вершина, а остальной граф будет представлять собой одну или более компонент связности. Переберем количество вершин в компоненте связности, содержащей корневую вершину. <tex dpi="150">(k=1\ldots n-1)</tex>. Для каждого <tex dpi="150">k</tex> посчитаем количество таких графов. Количество способов выбрать <tex dpi="150">k</tex> вершин из <tex dpi="150">n</tex> равно <tex dpi="150">\binom{n}{k}</tex>. Оставшийся граф является произвольным, таким образом | + | Вычислим <tex dpi="150">Y_{n}</tex>. Заметим, что, так как граф является несвязным, то в нём найдётся компонента связности, внутри которой лежит корневая вершина, а остальной граф будет представлять собой одну или более компонент связности. Переберем количество вершин в компоненте связности, содержащей корневую вершину. <tex dpi="150">(k=1\ldots n-1)</tex>. Для каждого <tex dpi="150">k</tex> посчитаем количество таких графов. Количество способов выбрать <tex dpi="150">k</tex> вершин из <tex dpi="150">n</tex> равно <tex dpi="150">\binom{n}{k}</tex>. Оставшийся граф является произвольным, таким образом количество помеченных графов в нем равно <tex dpi="150">G_{n-k}</tex>. Количество способов выделить корневую вершину в компоненте связности из <tex dpi="150">k</tex> вершин равно <tex dpi="150">k</tex>. Также количество связных графов в компоненте связности с корневой вершиной равно <tex dpi="150">CONN_{k}</tex>. |
Итого, для фиксированного <tex dpi="150">k</tex> количество корневых несвязных графов: | Итого, для фиксированного <tex dpi="150">k</tex> количество корневых несвязных графов: | ||
Строка 27: | Строка 27: | ||
<tex dpi="150">X_{n}=\frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}CONN_{k}G_{n-k}</tex> | <tex dpi="150">X_{n}=\frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}CONN_{k}G_{n-k}</tex> | ||
− | Таким образом | + | Таким образом количество связных графов порядка <tex dpi="130">n</tex>: |
<tex dpi="150">CONN_{n}=G_{n}-\frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}G_{n-k}CONN_{k}</tex> | <tex dpi="150">CONN_{n}=G_{n}-\frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}G_{n-k}CONN_{k}</tex> | ||
}} | }} |