Изменения

Перейти к: навигация, поиск

Обсуждение участника:AKhimulya

3828 байт добавлено, 01:30, 25 ноября 2014
Нет описания правки
{{Определение
|definition=Пусть дан фиксированный граф <tex>G</tex> и фиксированное число красок <tex>x</tex>. Количество способов правильной <tex>x</tex>-— [[Раскраска графа|раскраски графа ]] <tex>G</tex> называется '''хроматическим многочленом''' ('англ. ''chromatic polynomial'''). Обозначение: <tex>P(G,x)</tex>.
}}
== Хроматический многочлен полного графа ==<tex>P(K_{n},x)=x(x-1)...(x-n+1)=x^{\underline{n}}</tex>, так как первую вершину полного графа <tex>K_{n}</tex> можно окрасить в любой из <tex>x</tex> цветов, вторую — в любой из оставшихся <tex>x-1</tex> цветов и т. д. Очевидно, что если <tex>x</tex> меньше <tex>n</tex>, то и многочлен равен <tex>0</tex>, так как один из его множителей <tex>0</tex>.<br /> == Хроматический многочлен нуль-графа Рекуррентные формулы для хроматических многочленов ==
{{Определение
|definition='''Нуль-графСтягивание ребра''' (пустой граф, вполне несвязный граф, null graph, empty graph, edgeless graph) — регулярный граф степени 0, т.е. граф без рёберангл.}}<tex>P(O_{n},x)=x^{n}</tex>, так как каждую из <tex>n</tex> вершин нулевого графа <tex>O_{n}</tex> можно независимо окрасить в любой из <tex>x</tex> цветов.<br />''edge contraction'Примечание:''' Нулевой граф <tex>O_{n}</tex> также можно обозначать <tex>\overline{K_{n}}</tex> (дополнительный граф для полного графа <tex>K_{n}</tex>). == Хроматический многочлен дерева =={{Теорема|about=хроматический многочлен дерева|statement=Граф <tex>G</tex> с <tex>n</tex> вершинами является деревом тогда и только тогда, когда <tex>P(G,x)=x(x-1)^{n-1}</tex>.|proof=Сначала покажем, что хроматический многочлен любого дерева <tex>T</tex> с <tex>n</tex> вершинами есть <tex>x(x-1)^{n-1}</tex>.<br />Доказательство индукцией по числу <tex>n</tex>. Для <tex>n=1</tex> и <tex>n=2</tex> результат очевиден. Предположим, что <tex>P(T',x)=x(x-1)^{n-2}</tex> для любого дерева <tex>T'</tex> с количеством вершин равным <tex>n-1</tex>. Пусть <tex>uv</tex> ребро дерева <tex>T</tex>, такое что <tex>v</tex> является висячей замена концов ребра одной вершиной. Хроматический многочлен дерева <tex>T</tex> без ребра <tex>uv</tex> равен <tex>P(T/uv,x)=x(x-1)^{n-2}</tex> по нашему предположению. Вершину <tex>v</tex> можно окрасить <tex>x-1</tex> способом, так как её цвет должен только лишь отличаться от цвета соседями новой вершины <tex>u</tex>. Итого: <tex>P(T,x)=(x-1)P(T/uv,x)=x(x-1)^{n-1}</tex>.<br /><br />Обратно, пусть <tex>G</tex> — граф, у которого <tex>P(G,x)=x(x-1)^{n-1}</tex>. Тогда верны два следующих утверждения:<br />1. Граф <tex>G</tex> связен, потому что если было бы две компоненты связности (или больше), то <tex>P(G,x)</tex> делился бы на <tex>x^2</tex> без остатка.<br />2. В графе <tex>G</tex> количество рёбер равно <tex>n-1</tex>, так как по одной из теорем о коэффициентах хроматического многочлена ([[Хроматический многочлен#Коэффициенты хроматического многочлена|Коэффициенты хроматического многочлена]], теорема 4), количество рёбер в графе соответствует коэффициенту при <tex>x^{n-1}</tex>, взятому со знаком минус. В нашем случае, этот коэффициент удобно искать, используя бином Ньютона:<br /><tex>{P(G,x)=x(x-1)^{n-1}=x\left(x^{n-1}-{n-1 \choose 1}x^{n-2}+{n-1 \choose 2}x^{n-3}-...+(-1)^{n-1}\right)=x^{n}-(n-1)x^{n-1}+...+(-1)^{n-1}x}</tex><br />Из становятся соседи этих двух утверждений (связность и <tex>n-1</tex> ребро) следует, что граф <tex>G</tex> является деревом (см. [[Дерево, эквивалентные определения]], утверждения 1 и 3)концов.}} == Рекуррентные формулы для хроматических многочленов ==Будем обозначать за <tex>G/uv</tex> граф, полученный из графа <tex>G</tex> стягиванием ребра <tex>uv</tex>, то есть у которого вершины <tex>u</tex> и <tex>v</tex> будут отождествлены и при этом будут отброшены все петли и кратность ребер будет сведена к единице.}}
{{Теорема
|statement=
|proof=
Следует из предыдущей теоремы.
}}
 
== Примеры хроматических многочленов ==
=== Хроматический многочлен полного графа ===
<tex>P(K_{n},x)=x(x-1)...(x-n+1)=x^{\underline{n}}</tex>, так как первую вершину полного графа <tex>K_{n}</tex> можно окрасить в любой из <tex>x</tex> цветов, вторую — в любой из оставшихся <tex>x-1</tex> цветов и т. д. Очевидно, что если <tex>x</tex> меньше <tex>n</tex>, то и многочлен равен <tex>0</tex>, так как один из его множителей <tex>0</tex>.
 
=== Хроматический многочлен нуль-графа ===
{{Определение
|definition='''Нуль-граф''' (пустой граф, вполне несвязный граф; англ. ''null graph'', ''empty graph'', ''edgeless graph'') — регулярный граф степени <tex>0</tex>, т.е. граф без рёбер.}}
<tex>P(O_{n},x)=x^{n}</tex>, так как каждую из <tex>n</tex> вершин нулевого графа <tex>O_{n}</tex> можно независимо окрасить в любой из <tex>x</tex> цветов.<br>
'''Примечание:''' Нулевой граф <tex>O_{n}</tex> также можно обозначать <tex>\overline{K_{n}}</tex> (дополнительный граф для полного графа <tex>K_{n}</tex>).
 
=== Хроматический многочлен простой цепи ===
Пусть <tex>T_n</tex> — простая цепь, состоящая из <tex>n</tex> вершин. Рассмотрим процесс раскраски простой цепи: первую вершину можно покрасить в один из <tex>x</tex> цветов, вторую и последующие в один из <tex>x - 1</tex> цветов (т.е. так, чтобы цвет не совпадал с предыдущей вершиной). Тогда <tex>P(T_n, x) = x(x - 1) ^ {n - 1}</tex>.
 
=== Хроматический многочлен цикла ===
{{Теорема
|about=
хроматический многочлен цикла
|statement=
Пусть <tex>C_n</tex> — цикл длины <tex>n</tex>. Тогда хроматичсекий многочлен цикла <tex>P(C_n, x) = (x - 1)^n + (-1)^n(x - 1)</tex>.
|proof=
Рассмотрим случай <tex>n = 3</tex>: <tex>P(C_3, x) = x(x - 1)(x - 2) = (x - 1)(x^2 - x) = (x - 1)^3 + (-1)^3(x - 1)</tex>, что удовлетворяет формулировке теоремы.<br>
Пусть <tex>P(С_k, x) = (x - 1)^k + (-1)^k(x - 1)</tex>.<br>
Рассмотрим случай <tex>n = k + 1</tex>. По теореме о [[#.D0.A0.D0.B5.D0.BA.D1.83.D1.80.D1.80.D0.B5.D0.BD.D1.82.D0.BD.D1.8B.D0.B5_.D1.84.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D1.8B_.D0.B4.D0.BB.D1.8F_.D1.85.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D1.85_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD.D0.BE.D0.B2|рекурентной формуле для хроматических многочленов]]: <tex>P(C_{k + 1}, x ) = P(C_{k + 1} \setminus e, x) - P(C_{k + 1} / e, x)</tex> (где <tex>e</tex> — любое ребро <tex>C_{k + 1}</tex>).
Заметим, что граф <tex>C_{k + 1} / e</tex> изоморфен <tex>C_k</tex>. Заметим, что граф <tex>C_{k + 1} \setminus e</tex> является [[#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D0.BE.D0.B9_.D1.86.D0.B5.D0.BF.D0.B8|простой цепью]].
Тогда <tex>P(C_{k + 1}, x)=P(T_{k + 1}, x)-P(C_k, x)=x(x-1)^k-(x-1)^k-(-1)^k(x-1)=</tex><tex>(x-1)^{k+1}+(-1)^{k+1}(x-1)</tex>.
}}
=== Хроматический многочлен колеса ===
{{Определение
|definition=Колесо — это граф с <tex>n</tex> вершинами (<tex>n \le 4</tex>), образованный соединением единственной вершины со всеми вершинами (<tex>n - 1</tex>)-цикла.}}
Пусть <tex>W_n</tex> — колесо с <tex>n</tex> вершинами. Выбрав и зафиксировав один из <tex>x</tex> цветов на вершине, связнной со всеми остальными, имеем <tex> P_{C_{n - 1}}(x - 1) </tex> вариантов раскраски оставшегося графа. Тогда хроматичсекий многочлен колеса <tex>P_{W_n}(x) = x \cdot P_{C_{n - 1}}(x - 1) = x((x - 2)^{(n - 1)} - (-1)^n(x - 2))</tex>.
=== Хроматический многочлен дерева ===
{{Теорема
|about=
хроматический многочлен дерева
|statement=
Граф <tex>G</tex> с <tex>n</tex> вершинами является деревом тогда и только тогда, когда <tex>P(G,x)=x(x-1)^{n-1}</tex>.
|proof=
<tex>\Rightarrow</tex><br>
Сначала покажем, что хроматический многочлен любого дерева <tex>T</tex> с <tex>n</tex> вершинами есть <tex>x(x-1)^{n-1}</tex>.
Доказательство индукцией по числу <tex>n</tex>. Для <tex>n=1</tex> и <tex>n=2</tex> результат очевиден. Предположим, что <tex>P(T',x)=x(x-1)^{n-2}</tex> для любого дерева <tex>T'</tex> с количеством вершин равным <tex>n-1</tex>. Пусть <tex>uv</tex> — ребро дерева <tex>T</tex>, такое что <tex>v</tex> является висячей вершиной. Хроматический многочлен дерева <tex>T</tex> без ребра <tex>uv</tex> равен <tex>P(T/uv,x)=x(x-1)^{n-2}</tex> по нашему предположению. Вершину <tex>v</tex> можно окрасить <tex>x-1</tex> способом, так как её цвет должен только лишь отличаться от цвета вершины <tex>u</tex>. Итого: <tex>P(T,x)=(x-1)P(T/uv,x)=x(x-1)^{n-1}</tex>.<br>
<tex>\Leftarrow</tex><br>
Обратно, пусть <tex>G</tex> — граф, у которого <tex>P(G,x)=x(x-1)^{n-1}</tex>. Тогда верны два следующих утверждения:
<ol>
<li>Граф <tex>G</tex> связен, потому что если было бы две компоненты связности (или больше), то <tex>P(G,x)</tex> делился бы на <tex>x^2</tex> без остатка.<br /></li>
<li>В графе <tex>G</tex> количество рёбер равно <tex>n-1</tex>, так как по одной из теорем о коэффициентах хроматического многочлена ([[Хроматический многочлен#Коэффициенты хроматического многочлена|Коэффициенты хроматического многочлена]], теорема 4), количество рёбер в графе соответствует коэффициенту при <tex>x^{n-1}</tex>, взятому со знаком минус. В нашем случае, этот коэффициент удобно искать, используя бином Ньютона:<br />
<tex>{P(G,x)=x(x-1)^{n-1}=x\left(x^{n-1}-{n-1 \choose 1}x^{n-2}+{n-1 \choose 2}x^{n-3}-...+(-1)^{n-1}\right)=x^{n}-(n-1)x^{n-1}+...+(-1)^{n-1}x}</tex><br /> </li>
</ol>
Из этих двух утверждений (связность и <tex>n-1</tex> ребро) следует, что граф <tex>G</tex> является деревом (см. [[Дерево, эквивалентные определения]], утверждения 1 и 3).
}}
<tex>{P(G,x)=x^{n+1}-a_{1}x^{n}+a_{2}x^{n-1}-a_{3}x^{n-2}+\ldots}</tex> ,<br/>
<tex>{P(G_{2},x)=x^{n}-b_{1}x^{n-1}+b_{2}x^{n-2}+\ldots}</tex> ,<br/>
где <tex>a_{1}</tex>, <tex>a_{2}</tex>, , <tex>a_{n+1}</tex>, <tex>b_{1}</tex>, <tex>b_{2}</tex>, , <tex>b_{n}</tex> — некоторые неотрицательные целые числа. Из этих равенств получаем:<br/>
<tex>P(G_{1},x)=x^{n+1}-(a_{1}+1)x^{n}+(a_{2}+b_{1})x^{n-1}+\ldots</tex>.
Видно, что в этом полученном полиноме коэффициенты составляют знакопеременную последовательность.
}}
== Литература Источники информации ==1. * Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие. 2-е изд., испр. и доп. - СПб.: Издательство "Лань", 2010. - 368 с.: ил. - (Учебники для вузов. Специальная литература). '''ISBN 978-5-8114-1068-2'''<br />2. * Харари Ф. - Теория графов: Изд. 4-е. - М.: Книжный дом "ЛИБРОКОМ", 2009. - 296 с. '''ISBN 978-5-397-00622-4'''* [[wikipedia:en:Chromatic_polynomial| Wikipedia {{---}} Chromatic_polynomial]]* [[wikipedia:ru:Хроматическое_число#.D0.A5.D1.80.D0.BE.D0.BC.D0.B0.D1.82.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B9_.D0.BC.D0.BD.D0.BE.D0.B3.D0.BE.D1.87.D0.BB.D0.B5.D0.BD| Wikipedia {{---}} Хроматический многочлен]]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Раскраски графов]]
Анонимный участник

Навигация