Обсуждение участника:MetaMockery — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Начальные определения)
(не показаны 2 промежуточные версии этого же участника)
Строка 1: Строка 1:
== Функция Эйлера ==
+
[[Категория:Математический анализ 1 курс]]
 +
==Определения==
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
''Функция Эйлера'' <tex>\varphi (n) </tex> определяется как количество натуральных чисел, не превосходящих <tex>n</tex> и взаимно простых с <tex>n</tex>.
+
''Множество'' {{---}} первичное математическое понятие, которому не может быть дано строгое математическое определение. Представляет собой набор, совокупность каких-либо объектов, объединенных общим свойством.
 
}}
 
}}
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Функция <tex>f : \mathbb{N} \to \mathbb{Z} </tex> называется ''мультипликативной'', если <tex>f(mn) = f(m)f(n)</tex> для любых взаимно простых <tex>m, n</tex>.
+
Объекты, из которых состоит множество, называют ''элементами'' этого множества. Если <tex>a</tex> {{---}} элемент множества <tex>A</tex>, то записывают <tex>a \in A</tex> («<tex>a</tex> принадлежит <tex>A</tex>»). Если <tex>a</tex> не является элементом множества <tex>A</tex>, то записывают <tex>a \notin A</tex> («<tex>a</tex> не принадлежит <tex>A</tex>»). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов.
 
}}
 
}}
  
{{Теорема
+
==Задание множеств==
|about = Мультипликативность функции Эйлера
 
|statement = Для любых взаимно простых чисел <tex>m, n</tex>
 
: <math>\varphi(mn)=\varphi(m)\varphi(n)</math>
 
|proof =
 
Запишем <math>n \cdot m</math> натуральных чисел, не превосходящих <math>n \cdot m</math>, в виде прямоугольной таблицы с <math>n</math> столбцами и <math>m</math> строками, располагая первые <math>n</math> чисел в первой строке, вторые <math>n</math> чисел во второй и т.д.
 
 
 
Поскольку <math>n</math> и <math>m</math> взаимно просты, то целое <math>s</math> взаимно просто с <math>n \cdot m</math> тогда и только тогда, когда оно взаимно просто как с <math>n</math>, так и с <math>m</math>. Итак, нужно доказать, что количество чисел в таблице, взаимно простых с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>.
 
 
 
В данном доказательстве мы используем тот факт, что число <math>s</math> взаимно просто с натуральным <math>k</math> тогда и только тогда, когда остаток деления <math>s</math> на <math>k</math> тоже взаимно прост с <math>k</math>. Данный факт довольно очевиден и используется в [https://e-maxx.ru/algo/euclid_algorithm Алгоритме Евклида].
 
 
 
Теперь приступим непосредственно к доказательству. Число находящееся в <math>i</math>-ой строке и <math>j</math>-ом столбце нашей таблицы можно представить в виде <math>n(i - 1) + j</math>. Если это число взаимно просто с <math>n</math>, то и остаток этого числа по модулю <math>n</math> тоже взаимно прост с <math>n</math>. Но тогда и все числа в данном столбце тоже взаимно просты с <math>n</math>, так как весь столбец можно представить в виде арифметической прогрессии с разностью <math>n</math>, а при добавлении <math>n</math> остаток деления по модулю <math>n</math> не меняется. Поэтому, числа взаимно простые с <math>n</math> в таблице занимают ровно <math>\varphi(n)</math> столбцов.
 
 
 
Перед тем как продолжить доказательство, давайте рассмотрим небольшое утверждение. Пусть нам даны <math>m</math> последовательных членов арифметической прогрессии <math>a, a + d, \dots , a + (m - 1)d</math>. Тогда, если <math>(d, m) = 1</math>, то остатки всех этих <math>m</math> чисел по модулю <math>m</math> разные, а значит, образуют все множество остатков <math>\{0, \dots , m - 1\}</math>, причем каждый остаток получается ровно из одного из членов прогрессии.
 
 
 
Воспользуемся данным утверждением, подставив разность арифметической прогресии <math>d = n</math>. Тогда в каждом из <math>\varphi(n)</math> столбцов есть ровно <math>\varphi(m)</math> чисел, взаимно простых с <math>m</math>. Следовательно всего чисел, взаимно простых и с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>, что и требовалось доказать.
 
  
 +
1) Перечислением элементов: <tex> A = \{a_1, a_2 ..., a_n, ...\} </tex>
  
}}
+
2) Заданием определенного свойства обьектов: <tex> A = \{a: P\} </tex> , где P {{---}} определенное свойство обьекта а
  
== Функции <tex>\sigma(n)</tex>, <tex>\tau(n)</tex> и <tex>\varphi(n)</tex>, их мультипликативность и значения ==
+
==Операции==
  
Каноническое разложение числа <tex>\displaystyle n = \prod_{i=1}^{r}p_i^{s_i} </tex>, где <tex>r</tex> {{---}} количество простых делителей числа <tex>n</tex>, <tex>p_i</tex> {{---}} <tex>i</tex>-ый простой делитель, <tex>s_i</tex> {{---}} максимальная степень вхождения этого простого делителя.
+
# <tex> A \subset B </tex> (A является подмножеством B, каждый элемент из А также принадлежит В (<tex> \forall x: x \in A \Rightarrow x \in B </tex>));
 
+
# <tex> A \cap B </tex> (Пересечение множеств А и В: <tex> (x \in A) \wedge (x \in B) </tex>);
==== Функция <tex>\sigma(n)</tex> ====
+
# <tex> A \cup B </tex> (Объединение множеств А и В: <tex> (x \in A) \vee (x \in B) </tex>);
 
+
# <tex> B \backslash A </tex> (Разность множеств: <tex> (x \in B) \wedge (x \notin A) </tex>;
Функция <tex>\sigma : \mathbb{N} \to \mathbb{N} </tex> определяется как сумма делителей натурального числа <tex>n</tex>:
+
# <tex> \varnothing </tex> {{---}} пустое множество:
<center><tex>\displaystyle\sigma(n) = \sum_{d | n}d </tex></center>
+
#* <tex> A \cup  \varnothing = A </tex>
 
+
#* <tex> A \cap \varnothing = \varnothing </tex>
Если <math>m</math> и <math>n</math> взаимно просты, то каждый делитель произведения <math>mn</math> может быть единственным образом представлен в виде произведения делителей <math>m</math> и делителей <math>n</math>, и обратно, каждое такое произведение является делителем <math>mn</math>. Отсюда следует, что функция <tex>\sigma(n)</tex> мультипликативна:
+
#* <tex> \forall A: \varnothing \subseteq A </tex>
 
+
# <tex> \bigcup\limits_{\alpha\in W} A_\alpha</tex> {{---}} объединение нескольких множеств. В общем случае может состоять из бесконечного количества множеств:
Для простого числа <math>p</math> легко посчитать <tex>\displaystyle\sigma(p) = p + 1</tex>. При этом легко обобщается для некоторой степени <math>p</math>:
+
#* <tex> \bigcup\limits_{j \in N} A_j = A_1 \cup A_2 \cup </tex> ...
<center><tex>\displaystyle\sigma(p^s) = \sum_{k=0}^{s}p^k = \frac{p^{s + 1} - 1}{p - 1} </tex></center>
+
#* <tex> \bigcup\limits_{0 < x < 1} A_x </tex>
 
+
#* <tex> \bigcup\limits_{\alpha \in W} A_{\alpha} </tex>, и так далее..
В силу мультипликативности функции:
+
# <tex> A \cup B \cup C ... \subseteq U </tex> {{---}} &laquo;множество всего&raquo;, &laquo;универсальное множество&raquo;;
<center><tex> \displaystyle \sigma (n) = \prod_{i = 1}^{r}{\frac{p_{i}^{s_i+1}-1} {p_{i}-1}} </tex></center>
+
# <tex>\overline{A} = U </tex> \ <tex> A </tex> {{---}} дополнение множества А, дополнительное множество к А до U.
 
 
==== Функция <tex>\tau(n)</tex> ====
 
 
 
Функция <tex>\tau: \mathbb{N} \to \mathbb{N} </tex> определяется как число положительных делителей натурального числа <tex>n</tex>:  
 
<center><tex>\displaystyle\tau(n) = \sum_{d | n}1 </tex></center>
 
 
 
Если <math>m</math> и <math>n</math> взаимно просты, то каждый делитель произведения <math>mn</math> может быть единственным образом представлен в виде произведения делителей <math>m</math> и делителей <math>n</math>, и обратно, каждое такое произведение является делителем <math>mn</math>. Отсюда следует, что функция <tex>\tau(n)</tex> мультипликативна:
 
<center><math>\tau(mn)=\tau(m)\tau(n)</math></center>
 
 
 
Для простого числа <math>p</math> легко посчитать <tex>\displaystyle\tau(p) = 2</tex>. При этом легко обобщается для некоторой степени <math>p</math>:  
 
<center><tex>\displaystyle\tau(p^s) = s + 1 </tex></center>
 
 
 
В силу мультипликативности функции:
 
<center><tex> \displaystyle \tau(n) = \prod_{i = 1}^{r}(s_i + 1) </tex></center>
 
 
 
==== Функция <tex>\varphi(n)</tex> ====
 
 
 
Для простого числа <math>p</math> легко посчитать <tex>\displaystyle\varphi(p) = p - 1</tex>. На некоторую степень <math>p</math> формулу можно обобщить:
 
<center><tex>\displaystyle\varphi(p^s) = p^s - p^{s - 1} </tex></center>
 
Обосновывается следующим образом: Все не взаимно простые с <math>p^s</math> числа в диапазоне от 1 до <math>p^s</math>, очевидно, кратны <math>p</math>. Всего таких чисел <math>p^{s - 1}</math>.
 
 
 
В силу мультипликативности функции:
 
<center><tex> \displaystyle \varphi(n) = \prod_{i = 1}^{r}(p_i^{s_i} - p_i^{s_i - 1}) = \prod_{i = 1}^{r}p_i^{s_i}(1 - \frac{1}{p_i}) = n\prod_{i = 1}^{r}(1 - \frac{1}{p_i}) </tex></center>
 
 
 
== Малая теорема Ферма и теорема Эйлера ==
 
 
 
{{Теорема
 
|about= Теорема Эйлера
 
 
 
|statement = Если <math>n</math> и <math>a</math> {{---}} взаимно простые целые числа, то <math>a^{\varphi(n)} \equiv 1 \ (mod \ n)</math>
 
 
 
|proof =
 
Число <math>\overline{x}</math> называется вычетом по модулю <math>n</math>, если <math>\overline{x} \equiv x \ (mod \ n)</math>. Вычет <math>\overline{x}</math> называется обратимым вычетом, если существует вычет <math>\overline{y}</math>, такой что <math>\overline{x}\overline{y} \equiv 1 \ (mod \ n)</math>. Заметим, что вычет <math>\overline{x}</math> обратим тогда и только тогда, когда <math>\overline{x}</math> и <math>n</math> взаимно просты. Это обосновывается тем, что данное выражение можно представить в виде [https://e-maxx.ru/algo/diofant_2_equation линейного диофантово уравнения второго порядка] <math>\overline{x}\cdot\overline{y} + m \cdot n = 1</math>. Как видно из статьи, решение существует только при <math>(\overline{x}, n) = 1</math>. В таком случае, у числа <math>n</math> существует всего <math>\varphi(n)</math> обратимых вычетов. Пусть <math>\mathbb{Z}_{n}^{*}</math> {{---}} множество всех обратимых вычетов по модулю <math>n</math>.
 
 
 
Достаточно доказать данную теорему только для вычетов, так как мы знаем, что если остаток числа <math>a</math> по модулю <math>n</math> взаимно прост с <math>n</math>, то и само число взаимно просто с <math>n</math>. Напомним, что данный факт был ранее доказан в доказательстве мультипликативности функции Эйлера.
 
 
 
Рассмотрим вычеты по модулю <math>n</math>. Так как <math>n</math> и <math>a</math> взаимно просты, то вычет <math>\overline{a}</math> обратим. Пусть <math>\overline{b_1}, \overline{b_2}, \dots , \overline{b_{\varphi(n)}}</math> {{---}} все обратимые вычеты по модулю <math>n</math>. Тогда вычет <math>\overline{b} = \overline{b_1}\overline{b_2}\dots\overline{b_{\varphi(n)}}</math>, равный произведению всех обратимых вычетов, тоже обратим. Заметим, что отображение <math>\mathbb{Z}_{n}^{*} \to \mathbb{Z}_{n}^{*}</math>, заданное формулой <math>\overline{x} \mapsto \overline{a}\cdot\overline{x}</math> является биекцией. Действительно, мы просто умножаем каждый остаток на какую-то константу, от этого множество вычетов не изменится.  В таком случае в выражении <math> \overline{a}^{\varphi(n)}\overline{b} = (\overline{a} \overline{b_1}) \dots (\overline{a} \overline{b_{\varphi(n)}}) </math>, в правой части стоит произведение всех обратимых вычетов, но взятое в другом порядке. Тогда <math>\overline{a}^{\varphi(n)}\overline{b} = \overline{b}</math>. Умножая обе части на вычет, обратный к <math>\overline{b}</math>, получим, что <math>\overline{a}^{\varphi(n)} \equiv 1 \ (mod \ n) </math>, что и требовалось доказать.
 
 
 
}}
 
 
 
Следствием теоремы Эйлера является малая теорема Ферма. У нее также есть доказательство без использования более общей теоремы Эйлера, однако его мы приводить не будем.
 
  
 +
== Теорема де Моргана ==
  
 
{{Теорема
 
{{Теорема
|about = Малая теорема Ферма
+
|about=
 
+
де Моргана
|statement = Если целое число <math>a</math> и простое число <math>p</math> {{---}} взаимно просты, то <math>a^{p - 1} \equiv 1 \ (mod \ p)</math>
+
|statement=  
 
+
<tex>\overline{\bigcup\limits_\alpha A_\alpha} = \bigcap\limits_\alpha \overline{A_\alpha} \\
|proof = Так как <math>p</math> {{---}} простое, то <math>\varphi(p) = p - 1</math>. Воспользуемся теоремой Эйлера, тогда <math>a^{\varphi(p)} = a^{p - 1} \equiv 1 \ (mod \ p)</math>, что и требовалось доказать.
+
\overline{\bigcap\limits_\alpha A_\alpha} = \bigcup\limits_\alpha \overline{A_\alpha} </tex>
 
+
|proof=
 +
Докажем первое утверждение, второе доказывается аналогично.
 +
Для того, чтобы доказать равенство множеств, докажем, что первое множество включает второе и наоборот (частый приём при доказательстве равенства двух множеств).
 +
# <tex>\overline{\bigcup\limits_\alpha A_\alpha} \subseteq \bigcap\limits_\alpha \overline{A_\alpha}</tex>
 +
#* Пусть <tex>x \in \left ( \overline{\bigcup\limits_\alpha A_\alpha} \right )</tex>. Значит, не существует <tex>\alpha_1</tex> такого, что <tex>x \in A_{\alpha_1}</tex>. Следовательно, <tex>x \in \overline{A_\alpha}</tex> для любого <tex>\alpha</tex> и <tex>x \in \left (\bigcap\limits_\alpha \overline{A_\alpha} \right )</tex>.
 +
#* В силу выбора <tex>x</tex> (любой элемент множества <tex>\overline{\bigcup\limits_\alpha A_\alpha}</tex>) следует искомое включение.
 +
# <tex>\bigcap\limits_\alpha \overline{A_\alpha} \subseteq \overline{\bigcup\limits_\alpha A_\alpha}</tex>
 +
#* Пусть <tex>x \in \left ( \bigcap\limits_\alpha \overline{A_\alpha} \right )</tex>. Тогда для любого <tex>\alpha</tex> <tex>x \in \overline{A_\alpha}</tex>, то есть, <tex>x \notin A_\alpha</tex>. Поскольку <tex>x</tex> не входит ни в одно объединяемое множество, то <tex>x \notin \bigcup\limits_\alpha A_\alpha</tex>, то есть, <tex>x \in \overline{\bigcup\limits_{\alpha} A_\alpha}</tex>
 +
#* Аналогично, в силу выбора <tex>x</tex> выполняется искомое включение.
 
}}
 
}}
  
== Различные свойства функции Эйлера ==
+
Теорема де Моргана устанавливает двойственность понятий объединения и пересечения множеств. То есть, имея некоторое верное равенство, содержащее объединения и пересечения, можно переписать его, заменив пересечения на объединения и наоборот. Например, из равенства
 
+
:<tex>(A \cup B) \cap C = (A \cap C) \cup (B \cap C)</tex> следует равенство
{{Теорема
+
:<tex>(A \cap B) \cup C = (A \cup C) \cap (B \cup C)</tex>.
|about =
+
Доказывается это следующим образом: равны множества, значит, равны дополнения. После раскрытия дополнений приходим к написанному равенству.
 
 
|statement = Если для каких-то натуральных чисел <math>a</math> и <math>b</math> верно, что <math>a\,|\,b</math>, тогда верно и <math>\varphi(a)\,|\, \varphi(b)</math>
 
 
 
|proof =
 
Воспользуемся формулой для <tex> \displaystyle \varphi(n) = \prod_{i = 1}^{r}(p_i^{s_i} - p_i^{s_i - 1}) = \prod_{i = 1}^{r}p_i^{s_i - 1}(p_i - 1) </tex>.
 
 
 
:<math>a = p_1^{\alpha_1} \cdot\ldots\cdot p_{r_a}^{\alpha_{r_a}},</math>
 
:<math>b = p_1^{\beta_1} \cdot\ldots\cdot p_{r_b}^{\beta_{r_b}}</math>
 
 
 
При этом, так как <math>a\,|\,b</math>, то <math>r_a \leq r_b</math>, а также <math>\forall i \in [1\, ;\, r_a] \ \alpha_i \leq \beta_i</math>
 
 
 
<math></math>
 
 
 
Значит, <tex>\displaystyle\frac{\varphi(b)}{\varphi(a)}</tex><tex>\displaystyle = \frac{\displaystyle\prod_{i = 1}^{r_b}p_i^{\beta_i - 1}(p_i - 1)}{\displaystyle\prod_{i = 1}^{r_a}p_i^{\alpha_i - 1}(p_i - 1)} = \displaystyle(\prod_{i = 1}^{r_a}p_i^{\beta_i - \alpha_i}) \cdot \displaystyle(\prod_{i = r_a + 1}^{r_b}p_i^{\beta_i - 1}(p_i - 1))</tex>, а значит, <math>\varphi(a)\,|\, \varphi(b)</math>, что и требовалось доказать.
 
 
 
}}
 
 
 
{{Теорема
 
|about =
 
 
 
|statement = Для любого натурального числа <math>n</math> выполнено равенство <math>\displaystyle n = \sum_{d | n} \varphi(d)</math>
 
 
 
|proof = Данную теорему можно доказать разложив по формуле <math>\varphi(d)</math>, а можно более элегантно:
 
 
 
Рассмотрим <math>n</math> дробей <math>\frac{1}{n}, \frac{2}{n}, \dots , \frac{n}{n}</math>. Каждую дробь представим в виде несократимой дроби <math>\frac{p}{q}</math>.
 
Заметим, что множество значений <math>q</math> {{---}} это множество делителей числа <math>n</math>. Так как дробь <math>\frac{p}{q}</math> несократима, то <math>p</math> и <math>q</math> взаимно просты. Зная, что <math>p \leq q</math>, легко понять, что всего дробей со знаменателем <math>q</math> ровно <math>\varphi(q)</math>. Так как, все <math>n</math> дробей мы представили в несократимом виде, где знаменатель является делителем <math>n</math>, то <math>\displaystyle \sum_{d | n} \varphi(d) = n</math>, так как всего дробей <math>n</math>, что и требовалось доказать.
 
 
 
}}
 
 
 
:
 
 
 
{{Теорема
 
|about = Обобщённая мультипликативность
 
 
 
|statement = Пусть <math>n</math> и <math>m</math> {{---}} любые два натуральных числа, а <math>d = (n,\ m)</math>, тогда:
 
: <math>\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)\cdot\frac{d}{\varphi(d)}</math>
 
 
 
|proof =
 
 
 
Пусть <math>(m,\,n)=d,</math> тогда <math>m = m'd, \; n = n'd,</math> причем в общем случае <math>(m',\,d) \neq 1</math> и <math>(n',\,d) \neq 1.</math> Поэтому можно записать:
 
:<math>d = d_1^{\delta_1} \cdot\ldots\cdot d_k^{\delta_k} \cdot d_{k+1}^{\delta_{k+1}} \cdot\ldots\cdot d_{K}^{\delta_{K}},</math>
 
:<math>m' = d_1^{\alpha_1} \cdot\ldots\cdot d_k^{\alpha_k} \cdot p_1^{\beta_1} \cdot\ldots\cdot p_r^{\beta_r},</math>
 
:<math>n' = d_{k+1}^{\gamma_{k+1}} \cdot\ldots\cdot d_{K}^{\gamma_{K}} \cdot q_1^{\varepsilon_1} \cdot\ldots\cdot q_s^{\varepsilon_s}.</math>
 
Здесь первые <math>k</math> делителей <math>d</math> являются также делителями <math>m',</math> а последние <math>K-k</math> делителей <math>d</math> являются делителями <math>n'.</math> Распишем:
 
:<math>\varphi(mn)= \varphi(d^2 \cdot m'n')
 
= \varphi((d_1^{\delta_1} \cdot\ldots\cdot d_k^{\delta_k} \cdot d_{k+1}^{\delta_{k+1}} \cdot\ldots\cdot d_{K}^{\delta_{K}})^2 \cdot d_1^{\alpha_1} \cdot\ldots\cdot d_k^{\alpha_k} \cdot p_1^{\beta_1} \cdot\ldots\cdot p_r^{\beta_r} \cdot d_{k+1}^{\gamma_{k+1}} \cdot\ldots\cdot d_{K}^{\gamma_{K}} \cdot q_1^{\varepsilon_1} \cdot\ldots\cdot q_s^{\varepsilon_s}).</math>
 
В силу мультипликативности функции Эйлера, а также с учётом формулы
 
:<math>\varphi(p^n) = p^n(1-\frac{1}{p}),</math>
 
где <math>p</math> — простое, получаем:
 
:<math>
 
\begin{align}
 
\varphi(mn)
 
 
 
&= d_1^{\alpha_1+\delta_1}\left(1-\frac{1}{d_1}\right) \cdot\ldots\cdot d_k^{\alpha_k+\delta_k}\left(1-\frac{1}{d_k}\right) \cdot p_1^{\beta_1}\left(1-\frac{1}{p_1}\right) \cdot\ldots\cdot p_r^{\beta_r}\left(1-\frac{1}{p_r}\right) \cdot d_{k+1}^{\delta_{k+1}}\left(1-\frac{1}{d_{k+1}}\right) \cdot\ldots\cdot d_{K}^{\delta_{K}}\left(1-\frac{1}{d_{K}}\right)\times \\
 
 
 
&\; \times \; d_{k+1}^{\gamma_{k+1}+\delta_{k+1}}\left(1-\frac{1}{d_{k+1}}\right) \cdot\ldots\cdot d_{K}^{\gamma_{K}+\delta_{K}}\left(1-\frac{1}{d_{K}}\right) \cdot q_1^{\varepsilon_1}\left(1-\frac{1}{q_1}\right) \cdot\ldots\cdot q_s^{\varepsilon_s}\left(1-\frac{1}{q_s}\right) \cdot d_1^{\delta_1}\left(1-\frac{1}{d_1}\right) \cdot\ldots\cdot d_{k+1}^{\delta_{k+1}}\left(1-\frac{1}{d_{k+1}}\right)\times \\
 
 
 
&\; \times \; \frac{1}{\left(1-\frac{1}{d_1}\right) \cdot\ldots\cdot \left(1-\frac{1}{d_K}\right)}
 
\end{align}
 
</math>
 
В первой строке записано <math>\varphi(m),</math> во второй — <math>\varphi(n),</math> а третью можно представить, как <math>\frac{d}{\varphi(d)}.</math> Поэтому:
 
:<math>\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n) \cdot \frac{d}{\varphi(d)}</math>
 
 
 
}}
 
 
 
== Применение теоремы Эйлера в других задачах ==
 
 
 
==== Задача об ожерельях ====
 
 
 
{{Задача
 
|definition=
 
Требуется посчитать количество ожерелий из <tex>n</tex> бусинок, каждая из которых может быть покрашена в один из <tex> k </tex> цветов. При сравнении двух ожерелий их можно поворачивать, но не переворачивать (т.е. разрешается сделать циклический сдвиг).}}
 
 
 
В ходе решения задачи мы приходим к формуле <tex>|C| =</tex> <tex> \dfrac{1} {n}</tex><tex>\sum\limits_{i = 1}^{n} k^{\mathrm{gcd}(i,n)}</tex>
 
 
 
Мы можем улучшить эту формулу, если рассмотрим выражение <math>\mathrm{gcd}(i,n)</math>. Пусть <math>\mathrm{gcd}(i,n) = q</math>, тогда числа <math>i</math> и <math>n</math> оба делятся на <math>q</math> и больше не имеют общих делителей. Тогда <math>\mathrm{gcd}(\frac{i}{q},\frac{n}{q}) = 1</math>. Таких натуральных <math>i \in [1 ; n]</math> и имеющих <math>\mathrm{gcd}(i,n) = q</math> ровно <tex>\varphi\left(\dfrac{n}{q}\right)</tex>.
 
 
 
Пользуясь функцией Эйлера, мы можем привести формулу к более лаконичному виду <tex>|C| =</tex> <tex> \dfrac{1} {n}</tex><tex>\sum\limits_{q|n}\varphi\left(\dfrac{n}{q}\right)k^q</tex>.
 
 
 
== Алгоритм ==
 
Основной идеей алгоритма является формула <tex> \displaystyle \varphi(n) = n\prod_{i = 1}^{r}(1 - \frac{1}{p_i}) </tex>. Для решения задачи нам нужны только простые делители числа <math>n</math>. Их можно найти с помощью алгоритма факторизации. Написанный ниже алгоритм использует факторизацию числа, работающую за <math>O(\sqrt{n})</math>, однако есть более [https://e-maxx.ru/algo/factorization эффективные алгоритмы].
 
 
 
Асимптотика вычисления <math> \displaystyle \varphi(n) = O(\sqrt{n})</math>.
 
 
 
'''function''' phi (n):
 
    result = n
 
    i = 2
 
   
 
    '''while''' (i*i <= n):
 
        '''if''' n % i == 0:
 
            '''while''' n % i == 0:
 
                n /= i
 
            result -= result / i
 
        i++
 
    '''if''' (n > 1):
 
        result -= result/n
 
    '''return''' result
 
 
 
== См. также ==
 
* [[Задача об ожерельях]]
 
 
 
== Ссылки ==
 
* [https://ru.wikipedia.org/wiki/Функция_Эйлера Wikipedia {{---}} Функция Эйлера]
 
* [https://e-maxx.ru/algo/euler_function Алгоритм нахождения функции Эйлера]
 
* [https://wikichi.ru/wiki/Divisor_function Функция <math>\sigma</math>]
 

Версия 23:58, 14 июня 2021

Определения

Определение:
Множество — первичное математическое понятие, которому не может быть дано строгое математическое определение. Представляет собой набор, совокупность каких-либо объектов, объединенных общим свойством.


Определение:
Объекты, из которых состоит множество, называют элементами этого множества. Если [math]a[/math] — элемент множества [math]A[/math], то записывают [math]a \in A[/math][math]a[/math] принадлежит [math]A[/math]»). Если [math]a[/math] не является элементом множества [math]A[/math], то записывают [math]a \notin A[/math][math]a[/math] не принадлежит [math]A[/math]»). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов.


Задание множеств

1) Перечислением элементов: [math] A = \{a_1, a_2 ..., a_n, ...\} [/math]

2) Заданием определенного свойства обьектов: [math] A = \{a: P\} [/math] , где P — определенное свойство обьекта а

Операции

  1. [math] A \subset B [/math] (A является подмножеством B, каждый элемент из А также принадлежит В ([math] \forall x: x \in A \Rightarrow x \in B [/math]));
  2. [math] A \cap B [/math] (Пересечение множеств А и В: [math] (x \in A) \wedge (x \in B) [/math]);
  3. [math] A \cup B [/math] (Объединение множеств А и В: [math] (x \in A) \vee (x \in B) [/math]);
  4. [math] B \backslash A [/math] (Разность множеств: [math] (x \in B) \wedge (x \notin A) [/math];
  5. [math] \varnothing [/math] — пустое множество:
    • [math] A \cup \varnothing = A [/math]
    • [math] A \cap \varnothing = \varnothing [/math]
    • [math] \forall A: \varnothing \subseteq A [/math]
  6. [math] \bigcup\limits_{\alpha\in W} A_\alpha[/math] — объединение нескольких множеств. В общем случае может состоять из бесконечного количества множеств:
    • [math] \bigcup\limits_{j \in N} A_j = A_1 \cup A_2 \cup [/math] ...
    • [math] \bigcup\limits_{0 \lt x \lt 1} A_x [/math]
    • [math] \bigcup\limits_{\alpha \in W} A_{\alpha} [/math], и так далее..
  7. [math] A \cup B \cup C ... \subseteq U [/math] — «множество всего», «универсальное множество»;
  8. [math]\overline{A} = U [/math] \ [math] A [/math] — дополнение множества А, дополнительное множество к А до U.

Теорема де Моргана

Теорема (де Моргана):
[math]\overline{\bigcup\limits_\alpha A_\alpha} = \bigcap\limits_\alpha \overline{A_\alpha} \\ \overline{\bigcap\limits_\alpha A_\alpha} = \bigcup\limits_\alpha \overline{A_\alpha} [/math]
Доказательство:
[math]\triangleright[/math]

Докажем первое утверждение, второе доказывается аналогично. Для того, чтобы доказать равенство множеств, докажем, что первое множество включает второе и наоборот (частый приём при доказательстве равенства двух множеств).

  1. [math]\overline{\bigcup\limits_\alpha A_\alpha} \subseteq \bigcap\limits_\alpha \overline{A_\alpha}[/math]
    • Пусть [math]x \in \left ( \overline{\bigcup\limits_\alpha A_\alpha} \right )[/math]. Значит, не существует [math]\alpha_1[/math] такого, что [math]x \in A_{\alpha_1}[/math]. Следовательно, [math]x \in \overline{A_\alpha}[/math] для любого [math]\alpha[/math] и [math]x \in \left (\bigcap\limits_\alpha \overline{A_\alpha} \right )[/math].
    • В силу выбора [math]x[/math] (любой элемент множества [math]\overline{\bigcup\limits_\alpha A_\alpha}[/math]) следует искомое включение.
  2. [math]\bigcap\limits_\alpha \overline{A_\alpha} \subseteq \overline{\bigcup\limits_\alpha A_\alpha}[/math]
    • Пусть [math]x \in \left ( \bigcap\limits_\alpha \overline{A_\alpha} \right )[/math]. Тогда для любого [math]\alpha[/math] [math]x \in \overline{A_\alpha}[/math], то есть, [math]x \notin A_\alpha[/math]. Поскольку [math]x[/math] не входит ни в одно объединяемое множество, то [math]x \notin \bigcup\limits_\alpha A_\alpha[/math], то есть, [math]x \in \overline{\bigcup\limits_{\alpha} A_\alpha}[/math]
    • Аналогично, в силу выбора [math]x[/math] выполняется искомое включение.
[math]\triangleleft[/math]

Теорема де Моргана устанавливает двойственность понятий объединения и пересечения множеств. То есть, имея некоторое верное равенство, содержащее объединения и пересечения, можно переписать его, заменив пересечения на объединения и наоборот. Например, из равенства

[math](A \cup B) \cap C = (A \cap C) \cup (B \cap C)[/math] следует равенство
[math](A \cap B) \cup C = (A \cup C) \cap (B \cup C)[/math].

Доказывается это следующим образом: равны множества, значит, равны дополнения. После раскрытия дополнений приходим к написанному равенству.