Изменения

Перейти к: навигация, поиск

Обсуждение участника:MetaMockery

837 байт добавлено, 00:47, 26 декабря 2020
Функция Эйлера
Поскольку <math>n</math> и <math>m</math> взаимно просты, то целое <math>s</math> взаимно просто с <math>n \cdot m</math> тогда и только тогда, когда оно взаимно просто как с <math>n</math>, так и с <math>m</math>. Итак, нужно доказать, что количество чисел в таблице, взаимно простых с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>.
В данном доказательстве мы используя испольуем тот факт, что число <math>s</math> взаимно просто с натуральным <math>k</math> тогда и только тогда, когда остаток деления <math>s</math> на <math>k</math> тоже взаимно прост с <math>k</math>. Теперь приступим невосредственно к доказательству. Число находящееся в <math>i</math>-ой строке и <math>j</math>-ом столбце нашей таблицы можно представить в виде <math>n(i - 1) + j</math>. Если это число взаимно просто с <math>n</math>, то и остаток этого числа по модулю <math>n</math> тоже заимно прост с <math>n</math>. Но тогда и все числа в данном столбце тоже взаимно просты с <math>n</math>, так как весь столбец можно представить в виде арифметической прогрессии с разностью <math>n</math>, а при добавлении <math>n</math> остаток деления по модулю <math>n</math> не меняется. Поэтому, числа взамно простые с <math>n</math> в таблице занимают ровно <math>\varphi(n)</math> столбцов. Перед тем как продолжить доказательство, давайте рассмотрим небольшое утверждение. Пусть нам даны <math>m</math> последовательных членов арифметической прогрессии <math>a, a + d, \dots , a + (m - 1)d</math>. Тогда, если <math>(d, m) = 1</math>, то остатки всех этих <math>m</math> чисел по модулю <math>m</math> разные, а значит образуют все множество остатков <math>\{0, \dots , m - 1\}</math>, причем каждый остаток получается ровно из одного из членов прогрессии. Воспользуемся данным утверждением, подставив разность арифметиечской прогресии <math>d = n</math>. Тогда в каждом из <math>\varphi(n)</math> столбцов есть ровно <math>\varphi(m)</math> чисел, взаимно простых с <math>m</math>. Следовательно всего чисел, взаимно простых и с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>, что и требовалось доказать.
Теперь приступим невосредственно к доказательству. Число находящееся в <math>i</math>-ой строке и <math>j</math>-ом столбце нашей таблицы можно представить в виде <math>n(i - 1) + j</math>. Если это число взаимно просто с <math>n</math>, то и остаток этого числа по модулю <math>n</math> тоже заимно прост с <math>n</math>. Но тогда и все числа в данном столбце тоже взаимно просты с <math>n</math>, так как весь столбец можно представить в виде арифметической прогрессии с разностью <math>n</math>, а при добавлении <math>n</math> остаток деления по модулю <math>n</math> не меняется. Поэтому, числа взаинмо простые с <math>n</math> в таблице занимают ровно <math>\varphi(n)</math> столбцов. Проводя аналогичные рассуждения для строк, мы получим, что числа взаинмо простые с <math>m</math> в таблице занимают ровно <math>\varphi(m)</math> строк.
Следовательно всего чисел, взаимно простых и с <math>n</math> и с <math>m</math> равно <math>\varphi(m)\varphi(n)</math>, что и требовалось доказать.
}}
69
правок

Навигация