Изменения

Перейти к: навигация, поиск

Обсуждение участника:Qrort

1612 байт добавлено, 16:49, 23 января 2021
Нет описания правки
[[Категория: Практическое применение машинного обучения]]
1
== Машинное обучение в астрономии ==
Астрономия переживает стремительный рост объема и сложности данных. Существует множество проектов, исследующих и собирающих многоспектральные изображения неба, разновременную и многоволновую информацию, например, [https://www.sdss.org/ Слоановский цифровой небесный обзор] (англ. ''Sloan Digital Sky Survey, SDSS''). Такие проекты предоставляют оцифрованные изображения неба, соответственно, в последние годы алгоритмы машинного обучения становятся все более популярными среди астрономов и в настоящее время используются для решения самых разнообразных задач; причиной этому служит большое количество доступных данных. В этой статье кратко приводится практическая информация о применении инструментов машинного обучения к астрономическим данным.
====Классификация звезд и галактик====
[[Файл:Galaxy Unsupervised galaxy star featuresclassification.png|300px|thumb|right|Список признаков объектаРаспределение звезд, использующийся в классификации звезд галактик и галактик в одной из упомянутых работквазаров согласно меткам спектрометрических классов]]
Классификация звезд и галактик (англ. ''Star Galaxy Classification'') является базовым шагом любой классификации на звездах или галактиках, соответственно, имеет большое практическое значение. Существует много работ на эту тему, связанных с машинным обучением, использующих различные алгоритмы: случайный лес<ref>Miller, A. A., Kulkarni, M. K., Cao, Y., et al.2017, AJ, 153, 73</ref>, метод опорных векторов<ref>Kov ́acs, A., & Szapudi, I. 2015, MNRAS, 448,1305</ref>, нейронные сети<ref>Noble Kennamer, David Kirkby, Alexander Ihler, Francisco Javier Sanchez-Lopez ; Proceedings of the 35th International Conference on Machine Learning, PMLR 80:2582-2590, 2018.
</ref>, алгоритмы кластеризации<ref>C. H. A. Logan and S. FotopoulouA&A, 633 (2020) A154</ref>.
Главная проблема классификации звезд и галактик состоит в том, что, по мере удаления объекта от телескопа различные атмосферные или космогенные эффекты могут повлиять на свет, который отражается от тела и захватывается телескопом. Детерминированные алгоритмы классификации обычно проверяют звездную величину объекта на соответствие известным шаблонам звезд и галактик и работают только с объектом как таковым. В то же время кажется логичным, что результат классификации объекта может зависеть не только от того, как он выглядит на изображении, но и от того, как выглядит на изображении участок неба, в котором он находится (потому что на этот участок, скорее всего, влияют такие же эффекты искажения изображения). Алгоритмы машинного обучения, натренированные на изображениях, способны учесть эти зависимости.
=== Анализ астрономических явлений по спектральным данным===
==== Классификация корональных выбросов массы====
[[Файл:CoronalMassParams.png|300px|thumb|right|Признаки, использующиеся для классификации корональных выбросов массы]]Машинное обучение может быть использовано для классификации<ref>''Qu, M., Shih, F.Y., Jing, J. et al.'' Automatic Detection and Classification of Coronal Mass Ejections. Sol Phys 237, 419–431 (2006)</ref> [https://ru.wikipedia.org/wiki/Корональные_выбросы_массы корональных выбросов массы] на Солнце, определения их силы, источника и направления. Метод состоит в выборке определенного набора параметров выброса по данным спектрометрического коронографа [https://en.wikipedia.org/wiki/Large_Angle_and_Spectrometric_Coronagraph LASCO], а затем применения к этим данным метода опорных векторов. В таблице ниже приведены признаки корональных выбросов массы, на которых обучается алгоритм. Здесь <tex dpi="130">A</tex> и <tex dpi="130">A_p</tex> {{---}} области исследуемых изображений.{| class="wikitable"
|+ The properties of a CME region
|- ! No. !! || Description of the CME properties|- !| 1 || The exposure time of the <tex dpi="130">LASCO </tex> image|-| 2 || The time interval between the current and the previous image|-| 3 || The pixel size of the LASCO image|-| 4 || The mean brightness value of the reference image|-| 5 || The mean brightness value of the current image|-| 6 || The mean brightness value of the running difference|-| 7 || The standard deviation of the running difference|-| 8 || The number of pixels for <tex dpi="130">A</tex>|-| 9 || The threshold for segmentingAfrom the running difference|-| 10 || The maximum height (arcsecs from disk center) of <tex dpi="130">A</tex>|-| 11 || The height of the center of <tex dpi="130">A</tex>|-| 12 || The minimum height of <tex dpi="130">A</tex>|-| 13 || The starting angle of <tex dpi="130">A</tex>. The angle is calculated from North 0 clockwise|-| 14 || The angle of the center of <tex dpi="130">A</tex>|- | 15 || The ending angle of <tex dpi="130">A</tex>|-| 16 || The angular width of <tex dpi="130">A</tex>|-| 17 || The height difference (<tex dpi="130">h_1</tex>) between the maximum height of <tex dpi="130">A</tex> and <tex dpi="130">A_p</tex>|-| 18 || The height of the new moving region (<tex dpi="130">h_2</tex>) which is obtained by subtracting <tex dpi="130">A_p</tex> from <tex dpi="130">A</tex>|-| 19 || The speed which is computed using <tex dpi="130">h_1</tex>, divided by the interval time cadence|-| 20 || The speed which is computed using <tex dpi="130">h_2</tex> divided by the interval time cadence|-| 21 || The span width of the new moving region|-| 22 || The center angle of the new moving region
|}
 
Работа имеет большое практическое значение, так как корональные выбросы массы могут прерывать радиопередачу, наносить повреждения спутникам и линиям электропередачи, если они направлены в сторону Земли и имеют достаточную скорость и объем, чтобы достичь ее атмосферы<ref>https://en.wikipedia.org/wiki/Coronal_mass_ejection</ref>.
104
правки

Навигация