Изменения

Перейти к: навигация, поиск

Обучение на больших данных

4556 байт добавлено, 16:54, 23 января 2021
Применение методов машинного обучения для построения "озера" данных
{{В разработке}}
 
'''Обучение на больших данных''' {{---}} раздел машинного обучения, специализирующийся на построении моделей, обрабатывающих большие объёмы данных. Также встречаются термины "big data" или "большие данные".
=== Порядок работы с большими данными ===
Чтобы эффективно обрабатывать и анализировать большие данные, существуют такие инструменты как "аналитические модели"<ref name="analiticsmodels">[https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C Математические модели в форме аналитических моделей]</ref>. Их решения ищутся в замкнутом виде, в виде функциональных зависимостей. Такие модели способны строить гипотезы на основе больших данных, искать в них зависимости и закономерности {{---}} всю самую полезную для большинства бизнес-задач информацию. Кроме того, важна хорошая [[Интерпретируемые модели|интерпретируемость]] построенной модели, так как это позволяет упростить её анализ без повторного её построения, что в условиях больших данных при работе с большими данными крайне важно. Для этого большие данные проходят через несколько этапов:
1. [[Автоматическое машинное обучение|Чистка данных]] (англ. data cleaning) {{---}} поиск и исправление ошибок в первичном наборе информации, например, ошибки ручного ввода (опечатки) или некорректные значения с измерительных приборов из-за кратковременных сбоев;
2. [[Уменьшение размерности|Работа с признаками]] (англ. feature engineering) {{---}} генерация переменных для построения аналитических моделей;
3. [[Модель алгоритма и её выбор|Построение]] и обучение аналитической модели (англ. model selection) для предсказания целевой (таргетной) переменной. Так проверяются гипотезы о зависимости таргетной переменной от предикторов;.
На практике это помогает решить множество задач. Например, проанализировать, как связаны отказы оборудования с условиями подачи напряжения, или определить вероятность своевременного возврата кредита частным заемщиком.
Также стоит отметить, что в связи с большой популярностью "больших данных", эта сфера очень быстро развивается, постоянно появляются всё новые технологии и инструменты для работы. Для развивающегося бизнеса внедрение систем по работе с большими данными приводит к дополнительным материальным затратам. А от специалистов в этой сфере требуется быстро овладевать новыми навыками, что также может вызвать затруднения.
=== Применение машинного обучения к большим данным . Поиск в больших данных ===В условиях больших данных При работе с большими данными иногда возникает ситуация, когда пользователю нужно найти какие-то конкретные данные. Встаёт Возникает задача информационного эффективного поиска информации в больших данных. В силу большого объёма всех данных большинство известных методов поискабудут работать неэффективно. Например, '''''поиск перебором'''''<ref name="infosearchbruteforcesearch">[https://en.wikipedia.org/wiki/Brute-force_search#:~:text=In%20computer%20science%2C%20brute%2Dforce,candidate%20satisfies%20the%20problem's%20statement. Поиск перебором]</ref> (англ. ''exhaustive search'') {{---}} широко распространенный алгоритм не подходит для больших данных вследствие плохой оптимизации по времени исполнения и используемому месту. Также '''не подходят''' алгоритмы '''''поиска с ориентиром (индексирование)''''' (англ. ''beacon guided searching, BGS'') и [[Метрический классификатор и метод ближайших соседей|'''''метод "ближайших соседей"''''']] (англ. ''nearest neighbour search''). В случае первого на больших данных хранение индексов этих данных становится проблемой, так как данных слишком много, а в случае со вторым алгоритмом будут сильно мешать различные шумы и отклонения, коих в больших данных зачастую очень много. Здесь на помощь приходят [https://ru.wikipedia.org/wiki/%D0%9893%D0%BDB5%D1D0%84BD%D0%BEB5%D1%8082%D0%BCB8%D1%87%D0%B0B5%D1%8681%D0%B8BA%D0%BEB8%D0%BDB9_%D0%BDB0%D1D0%8BBB%D0%B9_B3%D0%BFBE%D0D1%BE80%D0%B8%D1%8182%D0%BA Информационный поискBC генетические алгоритмы]</ref>. В силу большого объёма всех Процедура поиска в больших данных производится довольно часто, следовательно такие алгоритмы довольно быстро приспособятся к поиску наиболее часто используемых данных будет неэффективно перебирать их все в поисках того. Также к плюсам генетических алгоритмов можно отнести возможность кастомизации и устойчивость к шумам, а также хорошую масштабируемость для задач с более высокой размерностью. Всё это как раз то, что нужнов случае больших данных. В данном случае можно применить алгоритмы машинного обучения Кроме того, которые занимаются классификацией при поиске в больших данных и их может помочь [[РанжированиеКластеризация|ранжированиемкластеризация]]этих данных. Таким образом они будут разбиты на группы "похожести", когда данные в каждой группе обладают сходными признаками, по которым можно существенно снизить круг дальнейшего поиска, что существенно ускоряет процесс поиска.Поиск С той же целью может применятся и оценка '''''важности признака при перестановке'''''<ref name="pfi">[https://docs.microsoft.com/ru-ru/dotnet/machine-learning/how-to-guides/explain-machine-learning-model-permutation-feature-importance-ml-net#train-the-model Permutation Feature Importance]</ref> (англ. ''permutation feature importance, PFI''). Этот приём позволяет выделить наиболее значимые признаки объектов. Заключается он в размеченных том, что после первоначального обучения некоторой модели происходит случайная перестановка значений признаков у объектов. За итерацию берётся некоторый признак, который есть у всех объектов, и отсортированных данных происходит значительно быстрееслучайная перестановка значений этого признака между объектами. А При этом оставшиеся признаки не изменяются. Далее происходит повторный запуск модели и производится расчёт отклонений её результатов от первичных. Такая процедура выполняется для всех признаков, чтобы можно было выделить наиболее значимые. Это может существенно помочь в условиях больших данных это очень важнозадаче поиска, когда можно снизить количество рассматриваемых признаков, принимая во внимание только наиболее значимые. Например, любая поисковая система при любом запросе должна давать результат за одно и то же времясуществует некоторый набор данных, однако объём тех данныхсодержащий информацию о продаваемой недвижимости. Каждый объект недвижимости имеет множество признаков: местоположение относительно объектов инфраструктуры, которые ей приходится проанализировать огроменуровень благополучия данного района города, поэтому эффективный поиск в больших данных {{---}} очень важная задачаи многие другие. В этом случае при помощи приёма PFI можно рассчитать, а машинное обучение сильно помогает в её решениикакие из этих признаков имеют большее влияние на цену объекта недвижимости.
== Обработка разнородных данных в рамках одной системы ==
Данная модель позволяет хранить как сырые разнородные данные, так и структурированные данные в соответствии с предопределенной схемой. Такой результат достигается наличием шаблонов объектов и шаблонов параметров объектов. Также это позволяет снизить временные затраты на доступ к данным.
 
=== Схема модели хранения разнородных данных ===
[[Файл:Schema.PNG|700px|thumb|right|Рисунок 1: Модель хранения разнородных данных<ref name="datalake_pic">[http://www.vstu.ru/upload/iblock/ed2/ed26c52e2ff99fb5b39fbaf37717a96c.pdf Модель хранения разнородных данных - схема озера данных]</ref>]]
 
=== Схема модели хранения разнородных данных ===
Рассмотрим схему модели, изображённую на рисунке 1:
* '''Parameter Object template''' {{---}} шаблон параметранекоторого объекта <tex>O</tex>. Каждый объект может иметь множество источников данных <tex>M_{ds}</tex>. Структуру объекта можно представить следующим образом: <tex>O=\langle ds_1, ds_2, хранимого в источнике данных;\dots, ds_m \rangle</tex>.
* '''Data source template''' {{---}} шаблон источника данных. Каждый источник данных может иметь множество параметров с различными типами данных <tex>M_p</tex>. Структуру источника данных можно представить следующим образом: <tex>ds=\langle p_1, p_2, \dots, p_k \rangle</tex>;
* '''Object Parameter template''' {{---}} шаблон некоторого объекта <tex>O</tex>. Каждый объект может иметь множество источников параметра, хранимого в источнике данных <tex>M_{ds}</tex>. Структуру объекта можно представить следующим образом: <tex>O=\langle ds_1, ds_2, \dots, ds_m \rangle</tex>.;
Чтобы реализовать такую модель хранения, необходимо выполнить следующие действия:
=== Применение методов машинного обучения для построения "озера" данных ===
Представленная выше модель хорошо описывает схему хранения разнородных данных путём создания некоторого шаблона, который мог бы описывать все эти данные. Построение такого шаблона может быть очень трудоёмкой задачей, так как данных много и их форматов тоже может быть много. Встаёт Возникает задача '''''метапрофилирования''''' данных. Этот процесс направлен на структуризацию разносортных данных и различных метаданных. Без этого большинство действий с данными будут попросту невозможны – будь то построение запросов для СУБД, очистка данных, их классификация и кластеризация. Кроме того, в условиях больших когда объёмы данныхслишком велики, в БД может быть огромное количество таблиц, чьи метаданные могут сильно различаться. В таких условиях получение полной информации даже по одному объекту будет практически невыполнимой задачей.
'''Мета-профайл''' (англ. ''metadata-profile'') {{- --}} особая структура данных, призванная собрать воедино различную информацию о конкретном объекте <tex>O</tex>. Сюда так же входят и различные представления этого объекта. Например, музыкальную композицию можно идентифицировать по-разному, от названия и автора до жанра и года создания:
::<tex>MP=(Name, Prop)</tex>
* <tex>Name</tex> {{---}} уникальное имя мета-профайла, <tex>Name \in Namespace</tex>, где <tex>Namespace</tex> {{---}} все возможные имена объектаобъектов;* <tex>Prop</tex> {{---}} множество атрибутов мета-профайла <tex>\{p_1, \dots, p_n\} | \forall p_i \in Prop: i=\{1, \dots, n\}</tex>. <tex>p_i=(PName_i, PType_i, P_i, PF_i)</tex>:** <tex>PName_i</tex> {{---}} уникальное имя атрибута, <tex>PName_i \in PNamespace</tex>, где <tex>PNamespace</tex> {{---}} все возможные имена атрибутов;.** <tex>PType_i</tex> {{---}} простой тип данных, <tex>PType_i \in Plaintypes</tex>, где <tex>Plaintypes</tex> {{---}} все возможные типы данных. Важно, что типы являются простыми, то есть числами, символами или строками;.
** <tex>P_i : 0 < P_i < 1</tex> {{---}} вероятность принадлежности атрибута <tex>p_i</tex> некоторому случайно отобранному представлению <tex>O</tex>.
Построение этой структуры можно произвести различными методами машинного обучения. Сюда входят [[Логистическая регрессия|логистическая регрессия]], [[Байесовская классификация|наивная байесовская классификация]], [[Глубокое обучение|глубокое обучение]]. Фактически, здесь стоит задача классификации, в которой мы должны понять, какие атрибуты относятся к описываемому объекту, а какие нет.
Предположим, что у нас имеется некоторая выборка данных из одного источника. В данной выборке для каждого объекта имеется лишь одно представление, достаточно полное для однозначной его идентификации. Также имеется выборка данных, относящихся к объектам совсем другого типа, но имеющих похожие атрибуты, её размер должен быть примерно таким же, как и у предыдущей, чтобы убедиться в том, что данные для обучения сбалансированы. Это необходимо, чтобы отметать неверные варианты при обучении. Опираясь на эти выборки, происходит обучение на остальных данных (различные источники данных), представленных в виде векторов , содержащих в себе имена различных атрибутов объекта и значения этих атрибутов. На основе вероятностей, имен, типов атрибутов принимается решение, отнести их к объекту или нет. Таким образом, шаблон объекта обрастает новыми атрибутами, по которым его можно идентифицировать.
== Работа с комплексом Apache Spark для обучения на больших данных ==
Но при всех достоинствах данного инструмента, наблюдалась низкая производительность на итеративных алгоритмах (например, алгоритмы машинного обучения). Решение проблемы было найдено в университете Беркли: была разработана модель распределенных вычислений, которая имеет устойчивость к сбоям при пользовании распределенной коллекцией данных (англ. resilient distributed dataset, RDD).
На основе RDD по сей день развивается система [https://spark.apache.org/ Apache Spark], которая обладает сравнительно высокой эффективностью при работе итеративных алгоритмов за счет кэширования результатов в памяти. На основе концепции распределенных коллекций разрабатываются распределенные системы:
* [https://spark.apache.org/docs/1.0.0/sql-programming-guide.html Shark] {{---}} хранилище данных;* [https://spark.apache.org/docs/latest/graphx-programming-guide.html GraphX] {{---}} система обработки графовых данных;* [https://spark.apache.org/docs/latest/streaming-programming-guide.html Spark Streaming] {{---}} система обработки потоковых данных;* [https://spark.apache.org/docs/latest/ml-guide.html Spark MLlib] {{---}} библиотека алгоритмов машинного обучения.
Все из перечисленных систем совместимы со стеком технологий Hadoop.
MLlib {{---}} основная библиотека Spark. Она предоставляет множество служебных программ, полезных для задач машинного обучения:
* классификация;
* регрессия;
== Источники информации ==
* [https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B8%D0%B5_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5 Wikipedia {{---}} Большие данные]
* [https://habr.com/ru/company/habr_career/blog/456746/ Блог компании Хабр Карьера {{---}} Большие данные — большая ответственность, большой стресс и большие деньги]
* [https://habr.com/ru/company/productstar/blog/503580/ Блог компании ProductStar {{---}} Что такое «Big Data»?]
* [https://databricks.com/spark/about О системе Apache Spark]
* [https://docs.microsoft.com/ru-ru/azure/hdinsight/spark/apache-spark-creating-ml-pipelines Документация от Microsoft {{---}} Создание конвейера машинного обучения Apache Spark]
* [https://www.researchgate.net/publication/322994594_A_survey_of_different_search_techniques_for_big_data A survey of different search techniques for big data] {{---}} 4th International Conference on Innovations in Information, Embedded and Communication Systems, 2017;
* [http://www.vstu.ru/upload/iblock/ed2/ed26c52e2ff99fb5b39fbaf37717a96c.pdf Методы обработки разнородных данных в проактивных системах управления транспортной инфраструктурой] {{---}} Чан Ван Фу, Волгоградский государственный технический университет, 2019г;
* [https://www.researchgate.net/profile/Michael_Gubanov/publication/346275767_WebLens_Towards_Interactive_Large-scale_Structured_Data_Profiling/links/5fc0055c299bf104cf7fd4a1/WebLens-Towards-Interactive-Large-scale-Structured-Data-Profiling.pdf Towards Interactive Large-scale Structured Data Profiling] {{---}} Rituparna Khan, Michael Gubanov {{---}} Department of Computer Science, Florida State University, 2020г.
[[Категория: Машинное обучение]]
[[Категория: Большие данные]]
59
правок

Навигация