Изменения

Перейти к: навигация, поиск

Обход в ширину

4529 байт добавлено, 12:45, 9 июня 2019
Анализ времени работы
'''Обход в ширину''' ('''Поиск в ширину''', 'англ. ''BFS''', '''Breadth-first search''') — один из простейших алгоритмов обхода [[Основные определения теории графов|графа]], являющийся основой для многих важных алгоритмов для работы с графами.
== Описание алгоритма ==[[Image: Graph-BFS.gif|thumb|240px|Алгоритм BFS<br><font color==#3c9eff>посещенные</font> вершины<br>]]
=== Общая идея ===
Пусть задан невзвешенный ориентированный граф <tex> G = (V, E) </tex>, в котором выделена исходная вершина <tex>s</tex>. Для алгоритма нам потребуются очередьТребуется найти длину кратчайшего пути (если таковой имеется) от одной заданной вершины до другой. Частным случаем указанного графа является невзвешенный неориентированный граф, которая сначала содержит только <tex> s </tex>, и множество посещенных вершин <tex> X </tex>, которое изначально тоже содержит только <tex> s </tex>т.е. На каждом шаге алгоритм вынимает из начала очереди вершинуграф, рассматривает все исходящие из нее в котором для каждого ребра и добавляет все связанные с ней непосещенные найдется обратное, соединяющее те же вершины в <tex> X </tex> и в конец очереди. Если очередь пуста, то алгоритм завершает работудругом направлении.
Поиск в ширину также может построить дерево поиска в ширину. Изначально оно состоит из одного корня Для алгоритма нам потребуются [[Очередь|очередь]] и множество посещенных вершин <tex> s was </tex>. Когда мы добавляем непосещенную , которые изначально содержат одну вершину в очередь, то добавляем ее и ребро, по которому мы до нее дошли, в дерево. Поскольку каждая вершина может быть посещена не более одного раза, она имеет не более одного родителя. После окончания работы алгоритма для каждой достижимой из <tex> s </tex> вершины . На каждом шагу алгоритм берет из начала очереди вершину <tex> t v </tex> путь в дереве поиска в ширину соответствует кратчайшему пути от и добавляет все непосещенные смежные с <tex> s v </tex> до вершины в <tex> t was </tex> и в <tex> G </tex>конец очереди. Если очередь пуста, то алгоритм завершает работу.
Также можно для каждой вершины <tex> t \in V </tex> считать длину этого пути, равную <tex> d[t] </tex>. Можно считать, что для непосещенных вершин эта длина бесконечно велика. Тогда на каждом шаге длина пути до <tex> t </tex> равна <tex> \rho(s, t) </tex>, если <tex> t </tex> посещена и <tex> \infty </tex> в противном случае. Отсюда следует, что если на каждом шаге обновлять длины путей, то информация о множестве <tex> X </tex> является избыточной, и его можно не хранить.
=== Анализ времени работы ==Оценим время работы для входного графа <tex>G = (V, E)</tex>, где множество ребер <tex> E </tex> представлено списком смежности. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют <tex> O(1) </tex> времени, так что общее время работы с очередью составляет <tex> O(|V|) </tex> операций. Для каждой вершины <tex> v </tex> рассматривается не более <tex> \mathrm{deg}(v) </tex> ребер, инцидентных ей. Так как <tex> \sum\limits_{v \in V} \mathrm{deg}(v) =2|E| </tex>, то время, используемое на работу с ребрами, составляет <tex> O(|E|) </tex>. Поэтому общее время работы алгоритма поиска в ширину — <tex> O(|V| + |E|) </tex>.
Оценим время работы для входного графа <tex>G = (V, E)</tex>. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют <tex> O(1) </tex> времени, так что общее время работы с очередью составляет <tex> O(|V|) </tex> операций. Для каждой вершины <tex> v </tex> рассматривается не более <tex> deg\ v </tex> ребер, инцидентных ей. Так как <tex> \sum\limits_{v \in V} deg\ v = 2|E| </tex>, то время, используемое на работу с ребрами, составляет <tex> O(|E|) </tex>. Поэтому общее время работы алгоритма поиска в ширину — <tex> O(|V| + |E|) </tex>. === Корректность ===
{{Утверждение
|statement=
В очереди поиска в ширину расстояние вершин доя до <tex>s</tex> монотонно неубывает.
|proof=
Докажем это утверждение индукцией по числу выполненных алгоритмом шагов.
Введем дополнительный инвариант: у любых двух вершин из очереди, расстояние до <tex> s </tex> отличается не более чем на <tex> 1 </tex>.  '''База''': изначально очередь содержит только одну вершину <tex> s </tex> .  '''Переход''': пусть после <tex> i-й </tex> итерации в очереди <tex> a + 1 </tex> вершин с расстоянием <tex> x </tex> и <tex> b </tex> вершин с расстоянием <tex> x + 1 </tex>.  Рассмотрим <tex> i-ю </tex> итерацию. Из очереди достаем вершину <tex> v </tex>, с расстоянием 0<tex> x </tex>. Пусть у v есть <tex>r </tex> непосещенных смежных вершин. Тогда, после их добавления, утверждение вернов очереди находится <tex> a </tex> вершин с расстоянием <tex> x </tex> и, после них, <tex> b + r </tex> вершин с расстоянием <tex> x + 1 </tex>.
Переход: пусть после Оба инварианта сохранились, <tex> l \Rightarrow </tex>-ого после любого шага алгоритма очередь содержит <tex> p </tex> вершин с расстоянием <tex> k </tex> и <tex> q </tex> вершин с расстоянием <tex> k + 1 </tex>. Тогда на <tex> l+1 </tex>-ом шаге мы извлечем из элементы в очереди одну вершину и добавим в нее все непосещенные(<tex> r </tex> вершин), связанные с ней; расстояние до них, очевидно, будет равно <tex> k + 1 </tex>. У нас останется <tex> p - 1 </tex> (возможно, 0) вершин с расстоянием <tex> k </tex> и <tex> q + r </tex> вершин с расстоянием k + 1, что соответствует нашему инвариантунеубывают.
}}
Допустим, что это не так. Выберем из вершин, для которых кратчайшие пути от <tex> s </tex> найдены некорректно, ту, настоящее расстояние до которой минимально. Пусть это вершина <tex> u </tex>, и она имеет своим предком в дереве обхода в ширину <tex> v </tex>, а предок в кратчайшем пути до <tex> u </tex> — вершина <tex> w </tex>.
Так как <tex> w </tex> — предок <tex> u </tex> в кратчайшем пути, то <tex> \rho(s, u) = \rho(s, w) + 1 > \rho(s, w) </tex>, и расстояние до <tex> w </tex> найдено верно, <tex> \rho(s, w) = d[w] </tex>. Значит, <tex> \rho(s, u) = d[w] + 1 </tex>.
Так как <tex> v </tex> — предок <tex> u </tex> в дереве обхода в ширину, то <tex> d[u] = d[v] + 1 </tex>.
}}
== Дерево обхода в ширину ==  Поиск в ширину также может построить [[Дерево, эквивалентные определения|дерево]] поиска в ширину. Изначально оно состоит из одного корня <tex> s </tex>. Когда мы добавляем непосещенную вершину в очередь, то добавляем ее и ребро, по которому мы до нее дошли, в дерево. Поскольку каждая вершина может быть посещена не более одного раза, она имеет не более одного родителя. После окончания работы алгоритма для каждой достижимой из <tex> s </tex> вершины <tex> t </tex> путь в дереве поиска в ширину соответствует кратчайшему пути от <tex> s </tex> до <tex> t </tex> в <tex> G </tex>. == Реализация == Предложенная ниже функция возвращает кратчайшее расстояние между двумя вершинами.*<tex> \mathtt{source} </tex> — исходная вершина*<tex> \mathtt{destination} </tex> — конечная вершина*<tex> \mathtt{G} </tex> — граф, состоящий из списка вершин <tex> \mathtt{V} </tex> и списка смежности <tex> \mathtt{E} </tex>. Вершины нумеруются целыми числами.*<tex> \mathtt{Q} </tex> — очередь.*В поле <tex> \mathtt{d[u]} </tex> хранится расстояние от <tex> \mathtt{source} </tex> до <tex> \mathtt{u} </tex>.  '''int''' '''BFS'''(G: (V, E), source: '''int''', destination: '''int'''): d = '''int'''[|V|] '''fill'''(d, <tex> \infty </tex>) d[source] = 0 Q = <tex> \varnothing </tex> Q.push(source) '''while''' Q <tex> \ne \varnothing </tex> u = Q.pop() '''for''' v: (u, v) '''in''' E '''if''' d[v] == <tex> \infty </tex> d[v] = d[u] + 1 Q.push(v) '''return''' d[destination] Если требуется найти расстояние лишь между двумя вершинами, из функции можно выйти, как только будет установлено значение <tex> \mathtt{d[destination]} </tex>.Еще одна оптимизация может быть проведена при помощи метода [[Meet-in-the-middle#Задача о нахождении кратчайшего расстояния между двумя вершинами в графе|meet-in-the-middle]]. == Вариации алгоритма ===== 0-1 BFS ===Пусть в графе разрешены ребра веса <tex> 0 </tex> и <tex> 1 </tex>, необходимо найти кратчайший путь между двумя вершинами. Для решения данной задачи модифицируем приведенный выше алгоритм следующим образом:
В приведенном ниже псевдокоде <tex> G = Вместо очереди будем использовать [[Персистентный_дек|дек]] (V, Eили можно даже steque) . Если рассматриваемое ее ребро имеет вес </tex> - входной граф, <tex> s 0 </tex> - выделенная вершина, Q - очередьто будем добавлять вершину в начало, а иначе в конец. Множество <tex> X </tex> не хранитсяПосле этого добавления, вместо него используются расстояния дополнительный введенный инвариант в дереве обхода доказательстве [[#Корректность | расположения элементов в ширину; деке в порядке неубывания]] продолжает выполняться, поэтому порядок в деке сохраняется. И, соответственно, релаксируем расстояние от <tex>s</tex> до вершины <tex>u</tex>всех смежных вершин и, вычисляемое алгоритмомпри успешной релаксации, хранится добавляем их в поле <tex>d[u]</tex>дек.
'''BFS'''(<tex>G</tex>Таким образом, в начале дека всегда будет вершина, расстояние до которой меньше либо равно расстоянию до остальных вершин дека, <tex>s</tex>) 1 dи инвариант [s[#Корректность | расположения элементов в деке в порядке неубывания]] <tex> \leftarrow </tex> 0 2 Q <tex> \leftarrow \emptyset </tex> 3 Qсохраняется.push(s) 4 '''while''' Q <tex> \ne \emptyset </tex> 5 '''do''' u <tex> \leftarrow </tex> QЗначит, алгоритм корректен на том же основании, что и обычный BFS.pop 6 '''for''' v: uv <tex> \in </tex> E 7 '''do''' '''if''' d[v] = <tex> \infty </tex> 8 '''then''' d[v] <tex> \leftarrow </tex> d[u] + 1 9 QОчевидно, что каждая вершина войдет в дек не более двух раз, значит, асимптотика у данного алгоритма та же, что и у обычного BFS.push(v)
== Ссылки =1-k BFS ===Пусть в графе разрешены ребра целочисленного веса из отрезка <tex>1 \ldots k</tex>, необходимо найти кратчайший путь между двумя вершинами. Представим ребро <tex>uv</tex> веса <tex>m</tex> как последовательность ребер <tex>uu_1u_2 \ldots u_{m - 1}v</tex> (где <tex>u_1 \ldots u_{m - 1}</tex> — новые вершины). Применим данную операцию ко всем ребрам графа <tex> G </tex>. Получим граф, состоящий (в худшем случае) из <tex>k|E|</tex> ребер и <tex>|V| + (k - 1)|E|</tex> вершин. Для нахождения кратчайшего пути следует запустить BFS на новом графе. Данный алгоритм будет иметь асимптотику <tex> O(|V| + k|E|) </tex>.
== См. также == * [http://e-maxx.ru/algo/bfs Поиск [Обход в ширину на e-maxx.ruглубину, цвета вершин]]* [http://ru.wikipedia.org/wiki/Поиск_в_ширину Поиск в ширину в Википедии[Алгоритм Дейкстры]]* [http://rain.ifmo.ru/cat/view.php/vis/graph-general/bfs-2002 Визуализатор алгоритма[Теория графов]]
== Литература Источники информации ==
*Томас Х. Кормен и др, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 20062007. — Сс. 1296459. — ISBN 05-8489-0857-4* [http://e-07maxx.ru/algo/bfs MAXimal :: algo :: Поиск в ширину]* [[wikipedia:en:Breadth-first_search| Wikipedia {{---}} Breadth-first search]]* [[wikipedia:ru:Поиск_в_ширину| Wikipedia {{---}} Поиск в ширину]]* [http://rain.ifmo.ru/cat/view.php/vis/graph-013151general/bfs-12002 Визуализатор алгоритма]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Кратчайшие пути в графах]]
Анонимный участник

Навигация