Изменения

Перейти к: навигация, поиск
Нет описания правки
{{Определение
|definition =
<tex>M_1 = \langle X_1, I_1 \rangle </tex> и <tex> M_2 = \langle X_2, I_2 \rangle </tex> — матроиды. Тогда <tex> M_1 \cup M_2 = \langle X = X_1 \cup X_2, I = \mathcal \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal \} \rangle </tex>.
}}
{{Лемма
|statement = <tex>M = \langle X, I \rangle</tex> — [[Определение матроида|матроид]], <tex> f \colon X \to Y</tex>. Также <tex>\exists f^{-1} \colon Y \to X</tex>. Тогда <tex>M_1 = \langle Y, I_1 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle </tex> является матроидом.
|proof =
Докажем аксиомы независимости для <tex> I_1 </tex>.
# <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex>
# <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex><br /><tex>A \in I_1</tex>, значит <tex>\exists S, S \in I</tex>, такое, что <tex> A = f(S)</tex>. Из этого следует, что <tex>B = f(S \setminus forall x \in A\ f^{-1} (A x) \setminus B)), (cap S \setminus f^{-1} (A ne \setminus B)) varnothing</tex>. Пусть <tex> T = \subset S {x \Rightarrow (in S \setminus | f^{-1} (A x) \in B\setminus }</tex>. Тогда <tex> B= f(T)) </tex> и из этого <tex> T \subseteq S, T \in I</tex>. Значит и <tex>B \in I_1</tex>, ч. т. д.# Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), |A| > |B|</tex>. Докажем, что <tex>\exists y \in A \setminus B, B \cup \mathcal \{ y \mathcal \} \in I_1</tex><br /><tex>A = f(S) \Rightarrow \exists S_1 \subset S, A = f(S_1), |S_1| = |A| </tex>.<br /><tex>B = f(T) \Rightarrow \exists T_1 \subset T, B = f(T_1), |T_1| = |B| </tex>.<br /><tex>S_1 \in I, T_1 \in I</tex> по второй аксиоме для <tex>M</tex>.<br /><tex> |S_1| > |T_1| </tex>, значит по третьей аксиоме для <tex>M</tex>, <tex>\exists x \in S_1 \setminus T_1, T_1 \cup \mathcal \{ x \mathcal \} \in I</tex>. Следовательно <tex>f(T_1 \cup \mathcal \{ x \mathcal \}) \in I_1</tex>и <tex>f(x) \in f(S_1 \setminus T_1) = A \setminus B.</tex> Также <br /><tex>f(T_1 \cup \mathcal \{ x \mathcal \}) = f(T_1) \cup f(x) = B \cup f(x)</tex>. Значит <tex>\exists y = f(x) \in A \setminus B , B \cup \mathcal \{ y \mathcal \} \in I_1</tex>
}}
{{Теорема
|statement = [[Объединение матроидов , проверка множества на независимость|Объединение матроидов]] является матроидом.|proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения [[Объединение матроидов, проверка множества на независимость|объединения матроидов]]. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \mathcal \{ 1 \mathcal \} \cup X_2 \times \mathcal \{ 2 \mathcal \}, I = \mathcal \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal \} \rangle </tex> , где <tex> X_1 \times \mathcal \{ i \mathcal \} </tex> — декартово произведение множеств <tex> X_1 </tex> и <tex> \mathcal \{ i \mathcal \} </tex>, является матроидом. Пусть <tex>f \colon X_1 \times \mathcal \{ 1 \mathcal \} \cup X_2 \times \mathcal \{ 2 \mathcal \} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \mathcal \{ 1 \mathcal \}) \rightarrow x </tex>, <tex>f(x \times \mathcal \{ 2 \mathcal \}) \rightarrow x </tex>. Тогда по вышеизложенной лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \mathcal \{ f(A) \mid A \in I \mathcal \} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>.
}}
== См. также==
* [[Определение матроида]]
* [[Объединение матроидов, проверка множества на независимость]]
* [[Алгоритм построения базы в объединении матроидов]]
7
правок

Навигация