Редактирование: Объединение матроидов, проверка множества на независимость

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 46: Строка 46:
  
 
|proof =
 
|proof =
Докажем аксиомы независимости для <tex> I_1 </tex>.
+
Докажем [[Определение матроида|аксиомы независимости]] для <tex> I_1 </tex>.
  
 
# <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex>
 
# <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex>
Строка 59: Строка 59:
 
|proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \{ 1 \} \cup X_2 \times \{ 2 \}, I = \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2  \} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \{ 1 \} \cup X_2 \times \{ 2 \} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \{ 1 \}) \rightarrow x </tex>, <tex>f(x \times \{ 2 \}) \rightarrow x </tex>. Тогда по лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \{ f(A) \mid A \in I \} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>.
 
|proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \{ 1 \} \cup X_2 \times \{ 2 \}, I = \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2  \} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \{ 1 \} \cup X_2 \times \{ 2 \} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \{ 1 \}) \rightarrow x </tex>, <tex>f(x \times \{ 2 \}) \rightarrow x </tex>. Тогда по лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \{ f(A) \mid A \in I \} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>.
 
}}
 
}}
 +
  
 
==См. также==
 
==См. также==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)