Изменения

Перейти к: навигация, поиск
Нет описания правки
{{Определение
|definition =
Пусть <tex>M_1 = \langle X, \mathcal{I}_1 I_1 \rangle </tex> и <tex> M_2 = \langle X, \mathcal{I}_2 I_2 \rangle </tex> {{---}} два матроида на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>\mathcal{I}_1I_1</tex> и <tex>\mathcal{I}_2I_2</tex>. Положим <tex> \mathcal{I} = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1I_1, A_2 \in \mathcal{I}_2 I_2 \mathcal {g} </tex>. Множество <tex>\mathcal{I}</tex> удовлетворяет [[Объединение матроидов, доказательство того, что объединение является матроидом|аксиомам независимости]], следовательно, <tex>\langle X, \mathcal{I} \rangle </tex> {{---}} матроид, для которого <tex>\mathcal{I}</tex> служит набором независимых множеств. Этот матроид называется '''объединением матроидов''' (англ. ''matroid union'') <tex>M_1</tex> и <tex>M_2</tex>, и обозначается <tex>M = M_1 \cup M_2 </tex>
}}
Обычно термин «объединение» применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, то это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]].
{{Задача
|definition=
Дан матроид <tex>M = M_1 \cup M_2, M = \langle X, \mathcal{I}\rangle</tex>. Необходимо проверить, является ли некоторое множество <tex>U \in X</tex> независимым, то есть, лежит ли оно в <tex>\mathcal{I}</tex>.
}}
Для решения этой задачи преобразуем каждый элемент множества <tex>X</tex> в матроиде <tex>M_1</tex> в <tex>(x, 1)</tex>, а каждый элемент множества <tex>X</tex> в матроиде <tex>M_2</tex> в <tex>(x, 2)</tex>. Мы получили два матроида <tex>M'_1 = \langle (X \times \{1\}), \mathcal{I}_1 I_1 \rangle </tex> и <tex> M'_2 = \langle (X \times \{2\}), \mathcal{I}_2 I_2 \rangle </tex>.
Определим функцию <tex>P_1</tex> : <tex> X \times Y \rightarrow X</tex>, при этом <tex>P_1((x, y)) = x</tex>, а для множества <tex>B \in X \times Y</tex> выполняется <tex>P_1(B) = \{A \subset X \mid \forall x \in A </tex> <tex> \exists b \in B : P_1(b) = x\}</tex>.
Затем определим два матроида, которые нам далее понадобятся:
# <tex>M_{\oplus} = M'_1 \oplus M'_2 = \langle (X \times \{1\}) \cup (X \times \{2\}),</tex> <tex> \mathcal{I}_I_{\oplus} = \{A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1I_1, A_2 \in \mathcal{I}_2I_2\} \rangle</tex> {{---}} прямая сумма двух матроидов (носители матроидов <tex>M'_1</tex> и <tex>M'_2</tex> при пересечении будут давать пустое множество).# <tex>M_{P_1} = \langle (X \times \{1\}) \cup (X \times \{2\}),</tex> <tex> \mathcal{I}_I_{P_1} = \{A \mid |P_1(A)| = |A|\} \rangle</tex> {{---}} <tex>\mathcal{I}_I_{P_1}</tex> в данном случае будет содержать такие независимые множества, что мощность любого множества <tex>A</tex> из <tex>\mathcal{I}_I_{P_1}</tex> будет равна мощности множества, получаемого функцией <tex>P_1</tex> над <tex>A</tex>, то есть <tex>A</tex> не будет содержать одновременно <tex>(x, 1)</tex> и <tex>(x, 2)</tex>.
Множество <tex>U</tex> является независимым, если [[Ранговая функция, полумодулярность|ранговая функция]] <tex> r(U) = |U|</tex>.
Можно заметить, что в матроиде <tex>M</tex> выполняется <tex>r(U) = \max\limits_{A \mid A \in \mathcal{I}_I_{\oplus}, A \in \mathcal{I}_I_{P_1}, P_1(A) \subset U} |A|</tex>.
Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов <tex>M_{\oplus}</tex> и <tex>M_{P_1}</tex>. С помощью [[Алгоритм построения базы в пересечении матроидов|алгоритма построения базы в пересечении матроидов]] найдем размер максимального подмножества <tex>U' \mid P_1(U') = U</tex> в пересечении наборов независимых множеств матроидов.
==Доказательство того, что обединение объединение матроидов является матродидом==
{{Определение
|definition =
<tex>M_1 = \langle X_1, I_1 \rangle </tex> и <tex> M_2 = \langle X_2, I_2 \rangle </tex> — матроиды. Тогда <tex> M_1 \cup M_2 = \langle X = X_1 \cup X_2, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex>.
}}
{{Лемма
|statement = <tex>M = \langle X, I \rangle</tex> — матроид, <tex> f \colon X \to Y</tex>. Тогда <tex>M_1 = \langle Y, I_1 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle </tex> является матроидом.
|proof =
Докажем аксиомы независимости для <tex> I_1 </tex>.
1. # <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex> 2. # <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex> <br /><tex>A \in I_1</tex>, значит <tex>\mathcal {9} exists S, S \in I</tex>, такое, что <tex> A = f(S)</tex>. <tex>B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I</tex>. Значит <tex>B \in I_1</tex>. 3. # Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), |A| > |B|</tex>. Докажем, что <tex> \mathcal {9} exists y \in A \setminus B, B \cup \mathcal{f} y \mathcal {g} \in I_1</tex> <br /><tex>A = f(S) \Rightarrow \mathcal {9} exists S_1 \subset S, A = f(S_1), |S_1| = |A| </tex>. <br /><tex>B = f(T) \Rightarrow \mathcal {9} exists T_1 \subset T, B = f(T_1), |T_1| = |B| </tex>. <br /><tex>S_1 \in I, T_1 \in I</tex> по второй аксиоме для <tex>M</tex>. <br /><tex> |S_1| > |T_1| </tex>, значит по третьей аксиоме для <tex>M</tex>, <tex>\mathcal {9} exists x \in S_1 \setminus T_1, T_1 \cup \mathcal{f} x \mathcal {g} \in I</tex>. Следовательно <tex>f(T_1 \cup \mathcal{f} x \mathcal {g}) \in I_1</tex>.<br /><tex>f(T_1 \cup \mathcal{f} x \mathcal {g}) = f(T_1) \cup f(x) = B \cup f(x)</tex>. Значит <tex>\mathcal {9} exists y = f(x) \in A \setminus B , B \cup \mathcal{f} y \mathcal {g} \in I_1</tex>
}}
|statement = Объединение матроидов является матроидом.
|proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \mathcal {f} 1 \mathcal {g}) \rightarrow x </tex>, <tex>f(x \times \mathcal {f} 2 \mathcal {g}) \rightarrow x </tex>. Тогда по лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>.
}}
 
==См. также==
7
правок

Навигация