Редактирование: Об интеграле Фурье

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 68: Строка 68:
 
признак Дини сходимости интеграла Фурье
 
признак Дини сходимости интеграла Фурье
 
|statement=
 
|statement=
Пусть <tex>f \in L_1, s \in \mathbb{R}</tex>. Если существует <tex>\Delta > 0: \int\limits_0^{\Delta} \frac{|\varphi_x(t)|}{t} dt < + \infty</tex>, то <tex> s = \lim\limits_{A \to \infty} I(A)</tex>.
+
Пусть <tex>f \in L_1, s \in \mathbb{R}</tex>. Если существует <tex>\Delta > 0: \int\limits_0^{\Delta} \frac{\varphi_x(t)}{t} dt < + \infty</tex>, то <tex> s = \lim\limits_{A \to \infty} I(A)</tex>.
 
|proof=
 
|proof=
 
Предположим, что для некоторого <tex>\Delta</tex>: <tex>\int\limits_0^\Delta \frac{|f(x+t)+f(x-t)-2s|}t dt = \int\limits_0^\Delta \frac{|\varphi_x(t)|}t dt < +\infty</tex>. Возьмём <tex>\delta \in (0; \Delta)</tex>.
 
Предположим, что для некоторого <tex>\Delta</tex>: <tex>\int\limits_0^\Delta \frac{|f(x+t)+f(x-t)-2s|}t dt = \int\limits_0^\Delta \frac{|\varphi_x(t)|}t dt < +\infty</tex>. Возьмём <tex>\delta \in (0; \Delta)</tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)