Оператор замыкания для матроидов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 10: Строка 10:
 
|statement = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид, <tex>A \subseteq X</tex>. Тогда <tex>r(A) = r(\langle A \rangle),</tex> где <tex>r</tex> {{---}} [[Ранговая функция, полумодулярность|ранг]].
 
|statement = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид, <tex>A \subseteq X</tex>. Тогда <tex>r(A) = r(\langle A \rangle),</tex> где <tex>r</tex> {{---}} [[Ранговая функция, полумодулярность|ранг]].
 
|proof =
 
|proof =
Пусть существуют множества <tex>B, D \in I:\ B \subseteq A,\ D \subseteq \langle A \rangle,\ |B| = r(A) < r(\langle A \rangle) = |D|.</tex> Тогда по аксиоме замен<ref>[[Определение матроида | Определение матроида]], 3-я аксиома</ref> <tex>\exists p \in D \setminus B :\ B \cup p \in I.</tex> Так как <tex>B</tex> {{---}} максимальное независимое множество из <tex> A </tex>, то <tex>p \notin A,</tex> то есть <tex> p \in \langle A \rangle \setminus A. </tex> Согласно определению замыкания возьмём максимальное по мощности множество <tex>H \subseteq A:\ H \in I,\ H\cup p \notin I.</tex> Поскольку <tex> |H| \leqslant |B| < |B \cup p|,</tex> то по аксиоме замены существует <tex>q \in (B \cup p)\setminus H :\ H \cup q \in I.</tex>  
+
Пусть существуют множества <tex>B, D \in I:\ B \subseteq A,\ D \subseteq \langle A \rangle,\ |B| = r(A) < r(\langle A \rangle) = |D|.</tex> Тогда по [[Определение матроида | 3-ей аксиоме]] <tex>\exists p \in D \setminus B :\ B \cup p \in I.</tex> Так как <tex>B</tex> {{---}} максимальное независимое множество из <tex> A </tex>, то <tex>p \notin A,</tex> то есть <tex> p \in \langle A \rangle \setminus A. </tex> Согласно определению замыкания возьмём максимальное по мощности множество <tex>H \subseteq A:\ H \in I,\ H\cup p \notin I.</tex> Поскольку <tex> |H| \leqslant |B| < |B \cup p|,</tex> то по аксиоме замены существует <tex>q \in (B \cup p)\setminus H :\ H \cup q \in I.</tex>  
  
 
Если <tex>q \in B,</tex> то <tex>(H \cup q) \subseteq A,\ </tex> но <tex> (H \cup q) \cup p \notin I </tex> в силу <tex> H \cup p \notin I </tex> (противоречие с максимальностью множества <tex>H</tex>). Если <tex>q = p,</tex> то <tex>(H \cup p) \in I</tex> (противоречит выбору множества <tex>H</tex>).
 
Если <tex>q \in B,</tex> то <tex>(H \cup q) \subseteq A,\ </tex> но <tex> (H \cup q) \cup p \notin I </tex> в силу <tex> H \cup p \notin I </tex> (противоречие с максимальностью множества <tex>H</tex>). Если <tex>q = p,</tex> то <tex>(H \cup p) \in I</tex> (противоречит выбору множества <tex>H</tex>).
Строка 38: Строка 38:
  
 
{{Определение
 
{{Определение
|definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид. Тогда '''покрытие''' (''span'') множества <tex>A \subseteq X</tex> {{---}} это множество <tex> span(A) = \mathcal {f} x \in X \; |\; r(A) = r(A \cup x) \mathcal {g}</tex>
+
|definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид. Тогда '''покрытие''' (англ. ''span'') множества <tex>A \subseteq X</tex> {{---}} это множество <tex> span(A) = \mathcal {f} x \in X \; |\; r(A) = r(A \cup x) \mathcal {g}</tex>
 
}}
 
}}
 
{{Определение
 
{{Определение
Строка 46: Строка 46:
 
{{Утверждение
 
{{Утверждение
 
|statement=Эти определения эквивалентны.
 
|statement=Эти определения эквивалентны.
|proof=Понятно, что <tex> x \in A </tex> подходят под оба определения. Для остальных же <tex> x \ r(A) = r(A \cup x) </tex> означает, что нету множеств <tex> S' \in I,\ S' \subseteq A \cup x,\ |S'| > r(A). </tex> Для такого <tex> S' </tex> обязательно будет выполнено <tex> x \in S', </tex> в противном случае <tex> S' \subseteq A, </tex> и тогда <tex> r(A) \geqslant |S'|ю </tex> Тогда для <tex> S = S' \setminus x </tex> верно <tex> S \subseteq A,\ S \in I. </tex> Из последнего получается, что <tex> r(A) \geqslant |S|, </tex> и учитывая <tex> r(A) < |S'|,\ |S| + 1 = |S'| </tex> имеем <tex> r(A) = |S|. </tex>  
+
|proof=Понятно, что элементы из <tex> A </tex> подходят под оба определения. Для остальных же <tex> x </tex> равенство <tex> \ r(A) = r(A \cup x) </tex> означает, что не найдётся множеств <tex> S' \subseteq A \cup x :\ S' \in I,\ |S'| > r(A). </tex> Для такого <tex> S' </tex> обязательно будет выполнено <tex> x \in S', </tex> в противном случае <tex> S' \subseteq A, </tex> откуда следует <tex> r(A) \geqslant |S'|. </tex> Следовательно для <tex> S = S' \setminus x </tex> верно <tex> S \subseteq A,\ S \in I. </tex> Из последнего получается, что <tex> r(A) \geqslant |S|, </tex> и учитывая <tex> r(A) < |S'|,\ |S| + 1 = |S'| </tex> имеем <tex> r(A) = |S|. </tex>  
  
Другими словами, не должно существовать множеств <tex> S \subseteq A,\ S \in I,\ |S| = r(A):\ S' = S \cup x \in I. </tex>  
+
Иначе говоря, не должно существовать множеств <tex> S \subseteq A,\ S \in I,\ |S| = r(A):\ S' = S \cup x \in I. </tex>  
 
}}
 
}}
  

Версия 15:14, 13 июня 2014

Замыкание

Определение:
Пусть [math]M =\; \langle X,I \rangle[/math]матроид. Тогда замыкание (closure) множества [math]A \subseteq X[/math] — это множество [math]\langle A \rangle \subseteq X[/math] такое, что [math]\langle A \rangle = A \cup \mathcal {f} x \in X \; |\; \exists H \subseteq A :\ H \in I ,\; H \cup x \notin I \mathcal {g}[/math]

Другими словами, замыкание множества [math] A [/math] — это все элементы из [math] A [/math] плюс такие [math] x \in X, [/math] которые при добавлении к некоторым независимым подмножествам [math] A [/math] не оставляют их независимыми.


Лемма:
Пусть [math]M =\; \langle X,I \rangle[/math] — матроид, [math]A \subseteq X[/math]. Тогда [math]r(A) = r(\langle A \rangle),[/math] где [math]r[/math]ранг.
Доказательство:
[math]\triangleright[/math]

Пусть существуют множества [math]B, D \in I:\ B \subseteq A,\ D \subseteq \langle A \rangle,\ |B| = r(A) \lt r(\langle A \rangle) = |D|.[/math] Тогда по 3-ей аксиоме [math]\exists p \in D \setminus B :\ B \cup p \in I.[/math] Так как [math]B[/math] — максимальное независимое множество из [math] A [/math], то [math]p \notin A,[/math] то есть [math] p \in \langle A \rangle \setminus A. [/math] Согласно определению замыкания возьмём максимальное по мощности множество [math]H \subseteq A:\ H \in I,\ H\cup p \notin I.[/math] Поскольку [math] |H| \leqslant |B| \lt |B \cup p|,[/math] то по аксиоме замены существует [math]q \in (B \cup p)\setminus H :\ H \cup q \in I.[/math]

Если [math]q \in B,[/math] то [math](H \cup q) \subseteq A,\ [/math] но [math] (H \cup q) \cup p \notin I [/math] в силу [math] H \cup p \notin I [/math] (противоречие с максимальностью множества [math]H[/math]). Если [math]q = p,[/math] то [math](H \cup p) \in I[/math] (противоречит выбору множества [math]H[/math]).
[math]\triangleleft[/math]
Теорема:
Оператор замыкания для матроидов обладает следующими свойствами:
  1. [math]A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle[/math]
  2. [math]q \notin \langle A \rangle,\; q \in \langle A \cup p \rangle \Rightarrow p \in \langle A \cup q \rangle[/math]
  3. [math]\langle \langle A \rangle \rangle = \langle A \rangle [/math]
Доказательство:
[math]\triangleright[/math]
  1. Положим [math]x \in \langle A \rangle.[/math] В соответствии с определением оператора замыкания есть 2 случая:
    • [math] x \in A. [/math] Тогда [math] x \in B [/math], и следовательно [math] x \in \langle B \rangle. [/math]
    • [math]\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.[/math] Для такого [math] H [/math] также верно [math]H \subseteq B,[/math] потому [math]x \in \langle B \rangle.[/math]
  2. Опять два случая:
    • [math] q \in A \cup p. [/math] Зная, что [math] q \notin \langle A \rangle, [/math] приходим к [math] q = p, [/math] чего нам более чем достаточно.
    • [math] \exists H \subseteq A \cup p :\ H \in I,\ H \cup q \notin I. [/math]
      Заметим, что [math] p \in H [/math], иначе бы [math] H [/math] подходило для [math] q \in \langle A \rangle, [/math] поэтому запишем имеющееся у нас иначе, положив [math] H' = H \setminus p: [/math]
      [math] \exists H' \subseteq A:\ H' \cup p \in I,\ H' \cup p \cup q \notin I. [/math]
      [math] H' \cup q \in I [/math], в противном случае в силу [math] H' \in I [/math] было бы [math] q \in \langle A \rangle. [/math]
      Как видим, множество [math] H' \cup q [/math] подходит под определение [math] p \in \langle A \cup q \rangle. [/math]
  3. Из определения понятно, что [math] \langle A \rangle \subseteq \langle \langle A \rangle \rangle [/math]. Предположим [math]\exists p \in \langle \langle A \rangle \rangle \setminus \langle A \rangle.[/math] Возьмем максимальное по мощности множество [math]B \in I :\ B \subseteq A.[/math] Так как [math]p \notin \langle A \rangle,[/math] то по определению замыкания [math]B \cup p \in I.[/math] Тогда, последовательно применив вышеуказанную лемму, дважды определение ранга и снова лемму, получим [math]r(\langle A \rangle) = r(\langle \langle A \rangle \rangle) \geqslant |B \cup p| = r(A) + 1 = r(\langle A \rangle) + 1,[/math] что невозможно.
[math]\triangleleft[/math]

Покрытие

Определение:
Пусть [math]M =\; \langle X,I \rangle[/math] — матроид. Тогда покрытие (англ. span) множества [math]A \subseteq X[/math] — это множество [math] span(A) = \mathcal {f} x \in X \; |\; r(A) = r(A \cup x) \mathcal {g}[/math]


Определение:
[math] span(A) = A \cup \mathcal {f} x \in X \; |\; \forall S \subseteq A,\ S \in I,\ |S| = r(A) :\ S \cup x \notin I \mathcal {g} [/math]


Утверждение:
Эти определения эквивалентны.
[math]\triangleright[/math]

Понятно, что элементы из [math] A [/math] подходят под оба определения. Для остальных же [math] x [/math] равенство [math] \ r(A) = r(A \cup x) [/math] означает, что не найдётся множеств [math] S' \subseteq A \cup x :\ S' \in I,\ |S'| \gt r(A). [/math] Для такого [math] S' [/math] обязательно будет выполнено [math] x \in S', [/math] в противном случае [math] S' \subseteq A, [/math] откуда следует [math] r(A) \geqslant |S'|. [/math] Следовательно для [math] S = S' \setminus x [/math] верно [math] S \subseteq A,\ S \in I. [/math] Из последнего получается, что [math] r(A) \geqslant |S|, [/math] и учитывая [math] r(A) \lt |S'|,\ |S| + 1 = |S'| [/math] имеем [math] r(A) = |S|. [/math]

Иначе говоря, не должно существовать множеств [math] S \subseteq A,\ S \in I,\ |S| = r(A):\ S' = S \cup x \in I. [/math]
[math]\triangleleft[/math]
Теорема:
Покрытие обладает следующими свойствами:
  1. [math] A, B \in X;\ A \subseteq span(B) \ \Rightarrow \ span(A) \subseteq span(B) [/math]
  2. [math] A \in X,\ p \in X \setminus A,\ q \in span(A \cup p) \Rightarrow p \in span(A \cup q) [/math]

Закрытые множества

Определение:
Множество [math]A \subseteq X[/math] называется закрытым (closed set, flat), если [math] span(A) = A. [/math] Класс закрытых множеств обозначается [math] \mathcal L [/math]


Теорема:
Замкнутые множества обладают следующими свойствами:
  1. [math] A, B \in \mathcal L \ \; \Rightarrow \ A \cap B \in \mathcal L [/math]
  2. Если [math] F \in \mathcal L,\ p \in X \setminus A [/math] и [math] F' [/math] — наименьшее по включению закрытое множество, содержащее [math] F \cup p, [/math] тогда не существует [math] F'' \in \mathcal L :\ F \subseteq F'' \subseteq F'. [/math]

Примечания


Источники информации