Определение интеграла Римана, простейшие свойства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 12: Строка 12:
 
Факт существования интеграла функции <tex>f</tex> обозначается как <tex>f \mathcal {2} R\left ( a,b \right )</tex><br><br>
 
Факт существования интеграла функции <tex>f</tex> обозначается как <tex>f \mathcal {2} R\left ( a,b \right )</tex><br><br>
 
Утверждение: Если <tex>f \mathcal {2} R\left ( a,b \right )</tex>, то <tex>f</tex> — ограничена.<br>
 
Утверждение: Если <tex>f \mathcal {2} R\left ( a,b \right )</tex>, то <tex>f</tex> — ограничена.<br>
<tex>\triangleright</tex> Пусть <tex dpi = "140">\exists I=\lim \sigma \left ( f, \tau \right ), ~\epsilon=1</tex>. Делим <tex>\left [ a,b \right ]</tex> на <tex>n</tex> разных частей, так, чтобы <tex dpi = "140">\frac{b-a}{n}<\sigma </tex> и фиксируем такое разбиение. Среди отрезков <tex>x_n</tex> берём один из них: <tex dpi = "140">\left [ x_{k_0},x_{{k_0}+1} \right ]</tex> и варьируем <tex>\overline{x_{k_0}}</tex> в его пределах произвольно; для других отрезков в качестве промежуточных точек берём их левую границу.
+
<tex>\triangleright</tex> Пусть <tex dpi = "140">\exists I=\lim \sigma \left ( f, \tau \right ), ~\epsilon=1</tex>. Делим <tex>\left [ a,b \right ]</tex> на <tex>n</tex> разных частей, так, чтобы <tex dpi = "140">\frac{b-a}{n}<\sigma </tex> и фиксируем такое разбиение. Среди отрезков <tex>x_n</tex> берём один из них: <tex>\left [ x_{k_0},x_{{k_0}+1} \right ]</tex> и варьируем <tex dpi = "140">\overline{x_{k_0}}</tex> в его пределах произвольно; для других отрезков в качестве промежуточных точек берём их левую границу.
 +
<tex>I-1-\sum\limits_{k=0,k\neq k_0}^{n-1} f \left ( x_k \right )\cdot\Delta_{k}<f \left ( \overline{x_{k_0}} \right )\cdot\Delta_{k_0}<I+1-\sum\limits_{k=0,k\neq k_0}^{n-1} f \left ( x_k \right )\cdot\Delta_{k}</tex>. Разделим на <tex>\Delta_{k_0}</tex>: <tex>\left | f \left ( \overline{x_{k_0}} \right ) \right | \leqslant M_{k_0}</tex> на <tex>\left [ x_{k_0},x_{{k_0}+1} \right ]</tex>. Проделывая так с каждым отрезком, мы увидим, что на каждом из них фунцкия ограничена, значит, она будет ограничена на всём отрезке.

Версия 07:55, 29 ноября 2010

Эта статья находится в разработке!

Пусть есть отрезок [math]\left [ a,b \right ][/math] и некоторое [math]\tau:a=x_0\lt x_1\lt ...\lt x_n=b[/math] ([math]\tau[/math] называется разбиением [math]\left [ a,b \right ][/math]). [math]\Delta_k=x_{k+1}-x_k[/math] называется длиной текущего отрезка разбиения.

[math]rang~ \tau \stackrel{\mathrm{def}}{=} \max \left \{ \Delta_0, \Delta_1, \dots, \Delta_{n-1} \right \}[/math]
[math]\overline{x_k} \mathcal {2} \left [ x_k,x_{k+1} \right ][/math], [math]~f\colon { \left [ a,b \right ]} \to {\mathbb {R}}[/math]
[math]\sigma \left ( f, \tau, \left \{ \overline{x_k} \right \} \right )[/math] (также обозначается как [math]\sigma \left ( f, \tau \right )[/math] или [math]\sigma \left ( \tau \right )[/math]) [math]~= \sum\limits_{k=0}^{n-1}[/math] [math]f \left ( \overline{x_k} \right )\cdot\Delta_{k}[/math] называется интегральной суммой Римана по разбиению [math]\tau[/math].
[math]I=$$\lim\limits_{rang~ \tau\to 0} \sigma \left ( f, \tau \right )$$\stackrel{\mathrm{def}}{\Leftrightarrow}\forall \epsilon \gt 0~\exists \delta \gt 0: rang~ \tau\lt \delta \Rightarrow \left | \sigma \left ( f, \tau \right ) - I \right | \lt \epsilon\left ( \forall \left \{ \overline{x_k} \right \}\right )[/math]


Определение:
Определённым интегралом Римана функции [math]f[/math] называется предел её интегральных сумм, коротко записывается как [math]\int\limits_a^b f(x)\,dx = \int\limits_a^b f[/math]


Факт существования интеграла функции [math]f[/math] обозначается как [math]f \mathcal {2} R\left ( a,b \right )[/math]

Утверждение: Если [math]f \mathcal {2} R\left ( a,b \right )[/math], то [math]f[/math] — ограничена.
[math]\triangleright[/math] Пусть [math]\exists I=\lim \sigma \left ( f, \tau \right ), ~\epsilon=1[/math]. Делим [math]\left [ a,b \right ][/math] на [math]n[/math] разных частей, так, чтобы [math]\frac{b-a}{n}\lt \sigma [/math] и фиксируем такое разбиение. Среди отрезков [math]x_n[/math] берём один из них: [math]\left [ x_{k_0},x_{{k_0}+1} \right ][/math] и варьируем [math]\overline{x_{k_0}}[/math] в его пределах произвольно; для других отрезков в качестве промежуточных точек берём их левую границу. [math]I-1-\sum\limits_{k=0,k\neq k_0}^{n-1} f \left ( x_k \right )\cdot\Delta_{k}\lt f \left ( \overline{x_{k_0}} \right )\cdot\Delta_{k_0}\lt I+1-\sum\limits_{k=0,k\neq k_0}^{n-1} f \left ( x_k \right )\cdot\Delta_{k}[/math]. Разделим на [math]\Delta_{k_0}[/math]: [math]\left | f \left ( \overline{x_{k_0}} \right ) \right | \leqslant M_{k_0}[/math] на [math]\left [ x_{k_0},x_{{k_0}+1} \right ][/math]. Проделывая так с каждым отрезком, мы увидим, что на каждом из них фунцкия ограничена, значит, она будет ограничена на всём отрезке.