Редактирование: Определение ряда Фурье

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 53: Строка 53:
 
Пусть <tex> S_n(x) = \frac {a_0}{2} + \sum\limits_{k = 1}^{n} (a_k \cos kx + b_k \sin kx) </tex>.
 
Пусть <tex> S_n(x) = \frac {a_0}{2} + \sum\limits_{k = 1}^{n} (a_k \cos kx + b_k \sin kx) </tex>.
  
По условию, <tex> \int\limits_{Q} | f(x) - S_n(x) | dx \rightarrow 0 </tex>. Зафиксируем некоторое натуральное <tex> p </tex>:
+
По условию, <tex> \int\limits_{Q} | f(x) - f_n(x) | dx \rightarrow 0 </tex>. Зафиксируем некоторое натуральное <tex> p </tex>:
  
 
<tex> | \int\limits_{Q} (f(x) - S_n(x)) \cos px dx | \le \int\limits | f(x) - S_n(x) | dx \xrightarrow[n \rightarrow \infty]{} 0 </tex>.
 
<tex> | \int\limits_{Q} (f(x) - S_n(x)) \cos px dx | \le \int\limits | f(x) - S_n(x) | dx \xrightarrow[n \rightarrow \infty]{} 0 </tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)