Изменения

Перейти к: навигация, поиск

Определение ряда Фурье

588 байт добавлено, 18:54, 25 июня 2014
L_p
[[Математический_анализ_2_курс|на главную <<]][[Интеграл Дирихле|>>]]
 
== L_p ==
{{Определение
|definition = <tex> L_p, (p \ge 1) </tex> {{---}} совокупность <tex> 2\pi </tex>-периодических функций, [http://slovari.yandex.ru/~%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%A1%D1%83%D0%BC%D0%BC%D0%B8%D1%80%D1%83%D0%B5%D0%BC%D0%B0%D1%8F%20%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F суммируемых ] с <tex> p </tex>-й степенью на промежутке <tex> Q = [-\pi, \pi] </tex>.
То есть,
<tex>L_p = \{ f | \mid f(x + 2\pi) = f(x), \int\limits_Q |f|^p < +\infty \} </tex>.
}}
{{Определение
|definition = Систему функций <tex> 1,\ \cos x,\ldots \sin x,\ ldots \cos nx,\ \sin nx, \ldots (n = 1, 2 \ldots)</tex> называют '''тригонометрической системой функций'''.
}}
Каждая из этих функций ограниченная, <tex> 2\pi </tex>-периодическая, следовательно, все функции принадлежат <tex>L_p</tex>.
Пусть <tex> S_n(x) = \frac {a_0}{2} + \sum\limits_{k = 1}^{n} (a_k \cos kx + b_k \sin kx) </tex>.
По условию, <tex> \int\limits_{Q} | f(x) - f_nS_n(x) | dx \rightarrow 0 </tex>. Зафиксируем некоторое натуральное <tex> p </tex>:
<tex> | \int\limits_{Q} (f(x) - S_n(x)) \cos px dx | \le \int\limits | f(x) - S_n(x) | dx \xrightarrow[n \rightarrow \infty]{} 0 </tex>.
}}
Колмогоров построил пример суммируемой <tex> 2\pi </tex>-периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье, сходящегося в каждой индивидуальной точке. Это тем более важно, учитывая, что существуют непрерывные <tex> L_p </tex>-функции, ряды которых расходятся в бесконечном числе точек.
Карлсон Карлесон доказал, что для функций из <tex> L_2 </tex> (а такие функции автоматически <tex>\in L_1</tex>) ряд Фурье сходится почти всюду.
Если функция является <tex> 2T </tex>-периодической, то для нее соответствующей тригонометрической системой будет <tex> 1,\ \cos \frac{\pi}{T} x,\ldots \sin \frac{\pi}{T} x,\ \cos \frac{\pi}{T} nx,\ \sin \frac{\pi}{T} nx, \ldots (n = 1, 2 \ldots)</tex>.
Пусть <tex> f(x) </tex> определена и суммируема на <tex> [0; a] </tex>. Тогда, продолжая ее периодически тем или иным способом на всю ось, мы будем получать разные ряды Фурье:
# <tex> T = a </tex>, на <tex> [-a; 0] </tex> продолжаем <tex> f </tex> как четную функцию. Тогда <tex> a_n = \frac2T \int\limits_{Q[0;T]} f(x) \cos \frac{\pi}{T}nx dx,\ b_n = 0 </tex>, ряд Фурье выглядит как <tex> \frac{a_0}{2} + \sum_{n = 1}^{\infty} a_n \cos \frac{\pi}{T}nx </tex>.# <tex> T = a </tex>, на <tex> [-a; 0] </tex> продолжаем <tex> f </tex> как нечетную функцию. В этом случае <tex> a_n = 0,\ b_n = \frac2T \int\limits_{Q[0;T]} f(x) \sin \frac{\pi}{T}nx dx </tex>, ряд Фурье имеет вид <tex> \sum_{n = 1}^{\infty} b_n \sin \frac{\pi}{T}nx </tex>.
# <tex> 2T = a </tex>, здесь присутствуют все члены ряда.
Итак, если <tex> f </tex> задана на <tex> [0; a] </tex>, то на этом участке ее можно представлять различными рядами Фурье.
Итак, если [[Математический_анализ_2_курс|на главную <tex> f </tex]][[Интеграл Дирихле|> задана на <tex> ]][[0; aКатегория:Математический анализ 2 курс]] </tex>, то на этом участке ее можно представлять различными рядами Фурье.
Анонимный участник

Навигация