Изменения

Перейти к: навигация, поиск
Нет описания правки
{{Лемма
|statement=
Пусть <tex>\{e_i\}_{i=1}^{k}</tex> {{---}} ОРТН базис <tex>L \ (dimL=k)</tex> тогда <tex>\mathcal{P}_{L}^{\bot}x= \sum\limits_{i=1}^{k}\left\langle x,e_i\right\rangle e_i. </tex>
|proof=
Без ограничения общности рассмотрим <tex>\{e_1..e_k, e_{k+1}..e_n\}</tex> {{---}} ОРТН базис <tex>E</tex>, где <tex>\{e_i\}_{i=1}^{k}</tex> {{---}} ОРТН базис <tex>L</tex>, a <tex>\{e_i\}_{i=k+1}^{n}</tex> {{---}} ОРТН базис <tex>M</tex> (на остальные вектора распространим по линейности)
'''Шаг 1.''' Рассмотрим <tex>e_j \ (j=1..k): \mathcal{P}_{L}^{\bot}e_j= \sum\limits_{i=1}^{k}\left\langle e_j,e_i\right\rangle e_i=\left\langle e_j,e_j\right\rangle e_j=e_j \Rightarrow \forall x \in L: \mathcal{P}_{L}^{\bot}x=x</tex>
'''Шаг 2.''' Рассмотрим <tex>e_s \ (s=k+1..n): \mathcal{P}_{L}^{\bot}e_s= \sum\limits_{i=1}^{k}\left\langle e_s,e_i\right\rangle e_i=0 \Rightarrow \forall y \in M: \mathcal{P}_{L}^{\bot}y=0 </tex>
}}
|definition=
Задачей о перпендикуляре называется задача отыскания ортогональной составляющей и проекции вектора <tex>x</tex>, то есть его разложения по формуле: <tex>x= \mathcal{P}_{L}^{\bot}x+ \mathcal{P}_{M}^{\bot}x</tex><br>
(где <tex>\mathcal{P}_{L}^{\bot}x</tex> {{---}} ортогональный проектор на пп <tex>L</tex>, <tex>L</tex> {{---}} пп унитарного пространства <tex>E</tex>, a <tex>\mathcal{P}_{LM}^{\bot}x</tex> {{---}} ортогональный проектор на пп <tex>M</tex>, <tex>M</tex> {{---}} ортогональное дополнение <tex>E</tex>).
}}
Решая эту систему уравнений для неизвестных <tex>\overline{\gamma_i}</tex>, находим коэффициенты разложения <tex>\mathcal{P}_{L}^{\bot}x</tex>.
<tex>\mathcal{P}_{M}^{\bot} x = x - \mathcal{P}_{L}^{\bot}x. </tex>
}}
 
==Матрица Грама==
{{Определение
|definition=
Пусть <tex>\{e_1..e_k\}</tex> {{---}} результат ортогонализации по Граму-Шмидту набора <tex>\{a_1..a_k\}</tex>, тогда <tex>G(a_1..a_k)=\Vert e_1 \Vert^2 \cdot \Vert e_2 \Vert^2 \cdot...\cdot \Vert e_k \Vert^2</tex> называется '''определителем Грама''' соответствующего набора векторов <tex>\{a_i\}_{i=1}^{k}</tex>.
}}
 
<math dpi = "145">G(a_1..a_k)= det\begin{pmatrix}
{\left\langle a_1,a_1 \right\rangle} & {\left\langle a_1,a_2 \right\rangle} & \cdots & {\left\langle a_1,a_k \right\rangle} \\
{\left\langle a_2,a_1 \right\rangle} & {\left\langle a_2,a_2 \right\rangle} & \cdots & {\left\langle a_2,a_k \right\rangle} \\
\vdots & \vdots & \ddots & \vdots \\
{\left\langle a_k,a_1 \right\rangle} & {\left\langle a_k,a_2 \right\rangle} & \cdots & {\left\langle a_k,a_k \right\rangle} \\
\end{pmatrix}</math>
 
{{Утверждение
|statement=
<tex>0 \leqslant G(a_1..a_k) \leqslant \Vert a_1 \Vert^2 \cdot \Vert a_2 \Vert^2 \cdot...\cdot \Vert a_k \Vert^2</tex>
}}
 
{{Утверждение
|statement=
<tex>G(a_1..a_k)=0 \Leftrightarrow \{a_1,a_2...a_k\}</tex> {{---}} ЛЗ.
}}
137
правок

Навигация