Изменения

Перейти к: навигация, поиск

Отношение рёберной двусвязности

587 байт добавлено, 19:18, 4 сентября 2022
м
rollbackEdits.php mass rollback
== Реберная Рёберная двусвязность ==
{{Определение
|definition =
Две вершины <tex>Uu</tex> и <tex> Vv</tex> [[Основные определения теории графов|графа]] <tex>G</tex> называются '''реберно рёберно двусвязными''' ''(англ. edge biconnected)'', если между этими вершинами существуют два реберно рёберно непересекающихся пути.
}}
{{Теорема
|statement=
Отношение реберной рёберной двусвязности является отношением эквивалентности на вершинах.
|proof=
 Пусть <tex>R</tex> {{- --}} отношение реберной рёберной двусвязности.[[Файл: Edge_biconnected.png|right|300px|thumb|К доказательству транзитивности.]]
'''Рефлексивность:''' <tex>(u, u)\in R. </tex> (Очевидно)
'''КоммутативностьСимметричность:''' <tex>(u, v)\in R \Rightarrow (v, u)\in R. </tex> (Очевидно)
'''Транзитивность:''' <tex>(u, v)\in R </tex> и <tex>(v, w)\in R \Rightarrow (u, w)\in R. </tex>
''Доказательство:'' Пусть из <tex> w </tex> в <tex> v </tex> есть два рёберно непересекающихся пути, <tex>P_1,</tex> и <tex> P_2 : </tex> соответственно. Обозначим за <tex> C </tex> объединение двух рёберно непересекающихся путей из <tex> u \rightsquigarrow </tex> в <tex> v </tex> (реберно не пересекающиеся . <tex> C </tex> будет рёберно-простым циклом. Пусть вершины <tex>a</tex> и <tex>b</tex> {{---}} первые со стороны <tex>w</tex> вершины на пересечении <tex> P_1 </tex> и <tex> P_2 </tex> с <tex> C </tex> соответственно.Рассмотрим два пути) <tex> wau </tex> и <tex> wbu </tex>, такие, что части <tex> au </tex> и <tex> bu </tex> идут в разные стороны по циклу <tex> C </tex>. Наличие двух таких рёберно непересекающихся путей очевидно, а значит <tex> u </tex> и <tex>Q_1,Q_2 : v \rightsquigarrow w </tex> (реберно не пересекающиеся пути)рёберно двусвязны
Составим пути <tex>S_1 = P_1 o Q_1 </tex> и <tex>S_2 = P_2 o Q_2 </tex>. Сделаем пути <tex>S_1, S_2 </tex> [[Теорема о существовании простого пути в случае существования пути|простыми]]. Получим два реберно не пересекающихся пути <tex>S_1, S_2 </tex>. Действительно, <tex>S_1 \land S_2 = \varnothing</tex>, так как <tex>P_1 \land P_2 = \varnothing </tex> (реберная двусвязность <tex>u</tex> и <tex>v</tex>), <tex>Q_1 \land Q_2 = \varnothing </tex> (реберная двусвязность <tex>w</tex> и <tex>v</tex>).
<tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность.
Если <tex>S_1 \land S_2 \neq \varnothing </tex>, тогда возьмем <tex>S_1 = P_1 o Q_2 </tex>, а <tex>S_2 = P_2 o Q_1 </tex>, сделаем их простыми.
Утверждение доказано.
}}
== Компоненты реберной рёберной двусвязности ==
{{Определение
|definition =
'''Компонентами реберной рёберной двусвязности ''' ''(англ. costal doubly-linked components)'' графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной рёберной двусвязности, а множества ребер рёбер - множества ребер из соответствующих классов эквивалентности.
}}
== См. также ==
*[[Отношение вершинной двусвязности]] == Источники информации ==* Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 60 с. — ISBN 5-354-00301-6*[http://rain.ifmo.ru/cat/view.php/vis/graph-general/biconnected-components-2005 Визуализатор - компоненты двусвязности] [[Категория:Алгоритмы и структуры данных]][[Категория:Связность в графах]]
1632
правки

Навигация