Оценка положения

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!

Оценка положения - представляет собой сочетание аппаратных средств и программного обеспечения, которое позволяет определить абсолютное положение объекта в пространстве.

Области применения

Задача оценки положения движущихся и статичных объектов возникает во множестве прикладных областей. Сейчас происходит подъем популярности разработки устройств и систем, отслеживающих положения объектов окружающего мира и использующих эту информацию для различных целей, рассмотрим несколько областей:

  1. Транспортные средства с встроенными системами помощи водителю (автопилот, круиз контроль и др.). Которые помогают водителю с парковкой, контролируют скорость и направление движения, а также предупреждают об объектах, находящихся на дороге, о типе дорожного покрытия и возможных авариях.
  2. Дополненная реальность: устройства в которых в реальное изображение, получаемое с помощью видеокамер, встраивается некоторая информация полезная человеку.
  3. Виртуальная реальность: оценка положения, как технология является критически важной для достижения эффекта погружения в виртуальную реальность. В сочетании с отслеживанием ориентации становится возможным измерять и передавать в ВР все 6 степеней свободы (6-DoF) реального мира
  4. Робототехника: Роботы (Медицинские, научные, промышленные и др.) которые основывают свое движение на построении карты окружения и препятствий.

Методы решения задачи оценки положения

Акустические методы

Акустические приборы слежения используют ультразвуковые (высокочастотные) звуковые волны для измерения положения и ориентации целевого объекта. Для определения положения объекта измеряется время пролёта (time-of-arrival) звуковой волны от передатчика к приёмникам, либо разность фаз синусоидальной звуковой волны при приёмо-передаче. Алгоритмы трекинга положения при использовании акустических приборов основаны на Трилатерации и расчете Угла Прибытия.При использовании данных методов, разработчики сталкиваются с некоторыми проблемами: акустические трекеры, как правило имею низкую скорость обновления связанную с низкой скорости звука в воздухе, скорость звука в воздухе зависит от внешних факторов среды, таких как температура, давление и влажность

Радиочастотные методы

Методов, основанных на радиочастотах достаточно много.

  1. Позиционирования с использованием пассивных радиочастотных идентификаторов RFID
    Основное назначение систем с пассивными RFID метками – идентификация. Они применяются в системах, традиционно использовавших штрих-коды или магнитные карточки – в системах распознавания товаров и грузов, опознания людей, в системах контроля и управления доступом (СКУД) и т.п.Система включает RFID метки с уникальными кодами и считыватели и работает следующим образом. Считыватель непрерывно генерирует радиоизлучение заданной частоты. ЧИП метки, попадая в зону действия считывателя, использует это излучение в качестве источника электропитания и передает на считыватель идентификационный код. Радиус действия считывателя составляет около метра.
  2. Позиционирование с использованием активных RFID
    Активные радиочастотные метки используются при необходимости отслеживания предметов на относительно больших расстояниях (например, на территории сортировочной площадки). Рабочие частоты активных RFID – 455МГц, 2,4ГГц или 5,8ГГц, а радиус действия – до ста метров. Питаются активные метки от встроенного аккумулятора.Существуют активные метки двух типов: радиомаяки и транспондеры. Транспондеры включаются, получая сигнал считывателя. Они применяются в АС оплаты проезда, на КПП, въездных порталах и других подобных системах.Радиомаяки используются в системах позиционирования реального времени. Радиомаяк отправляет пакеты с уникальным идентификационным кодом по команде либо с заданной периодичностью. Пакеты принимаются как минимум тремя приемниками, расположенными по периметру контролируемой зоны. Расстояние от маячка до приемников с фиксированными координатами определяются по углу направления на маячок Angle of arrival (AoA), по времени прихода сигнала Time of arrival (ToA) или по времени распространения сигнала от маячка до приемника Time-of-flight (ToF).Инфраструктура системы строится на базе проводной сети и в двух последних случаях требует синхронизации.
  3. Ultra Wideband (UWB) позиционирование
    Технология UWB (сверхширокополосная) использует короткие импульсы с максимальной полосой пропускания при минимальной центральной частоте. У большинства производителей центральная частота составляет несколько гигагерц, а относительная ширина полосы – 25-100%. Технология используется в связи, радиолокации, измерении расстояний и позиционировании.Это обеспечивается передачей коротких импульсов, широкополосных по своей природе. Идеальный импульс (волна конечной амплитуды и бесконечно малой длительности), как показывает анализ Фурье, обеспечивает бесконечную полосу пропускания. UWB сигнал не походит на модулированные синусоидальные волны, а напоминает серию импульсов. Производители предлагают разные варианты UWB технологии. Различаются формы импульсов. В некоторых случаях используются относительно мощные одиночные импульсы, в других – сотни миллионов маломощных импульсов в секунду. Применяется как когерентная (последовательная) обработка сигнала, так и не когерентная. Все это приводит к значительному различию характеристик UWB систем разных производителей.

Магнитные методы

Магнитный трекинг основан на измерении интенсивности магнитного поля в различных направлениях. Как правило, в таких системах есть базовая станция, которая генерирует переменный или постоянный ток. Так как сила магнитного поля уменьшается с увеличением расстояния между точкой измерения и базовой станции, можно определить местоположение контроллера. Если точка измерения вращается, распределение магнитного поля изменяется по различным осям, что позволяет определить ориентацию. Наиболее известными продуктами на основе магнитного трекинга являются VR контроллер Razer Hydra и система STEM от компании Sixense. Точность данного метода может быть достаточна высока в контролируемых условиях (в спецификациях Hydra говорится о 1 мм позиционной точности и 1 градусе точности ориентации), однако магнитное отслеживание подвержено помехам от токопроводящих материалов вблизи излучателя или датчика, от магнитных полей, создаваемых другими электронными устройствами и ферромагнитных материалов в пространстве отслеживания.

Оптические методы

Оптические методы представляют собой совокупность алгоритмов компьютерного зрения и отслеживающих устройств, в роли которых выступают камеры видимого или инфракрасного диапазона, стерео-камеры и камеры глубины. Оптический трекинг основан на том же принципе, что и стереоскопического зрения человека. Когда человек смотрит на объект с помощью бинокулярного зрения, он в состоянии определить приблизительно на каком расстоянии объект находится. Не достаточно просто установить пару камер для имитации стереоскопического зрения человека. Камеры должны определить расстояние до объекта и его положения в пространстве, так что необходимо откалибровать.Оптические системы надежны и относительно дешевы, но их трудно калибровать. Кроме того, система требует прямой линии света без закупорки, в противном случае мы получаем неправильные данные. В зависимости от наличия специальных оптических маркеров выделяют отдельно:

  • Без маркерный трекинг: как правило строится на сложных алгоритмах с использованием двух и более камер, либо стерео камер с сенсорами глубины. Используется наибольшим образом в автомобилях с автопилотам и иными системами помощи водителю.
  • Трекинг с использованием маркеров: предполагает заранее заданную модель объекта, которую можно отслеживать даже с одной камерой. Маркерами обычно служат источники инфракрасного излучения (как активные, так и пассивные), а также видимые маркеры наподобие QR-кодов. Такой вид трекинга возможен только в пределах прямой видимости маркера.

Задача Perspective-n-Point (PnP)

Рис. 1 Задача (PnP)

При оптическом отслеживании для определения положения объекта в пространстве решается так называемая задача PnP (Perspective-n-Point),когда по перспективной проекции объекта на плоскость сенсора камеры необходимо определить положение объекта в 3D-пространстве.

Для заданной 3D-модели объекта и 2D-проекции объекта на плоскость камеры решается система уравнений. В результате чего получается множество возможных решений. Количество решений зависит от числа точек в 3D-модели объекта.\ Однозначное решение для определения 6-DoF положения объекта можно получить как минимум при 4 точках. Для треугольника получается от 2 до 4 возможных решений, то есть положение не может быть определено однозначно
Рис. 2 Решение "треугольников"

Решение предлагается достаточно большим количеством алгоритмов, реализованных в виде библиотек:

  1. POS (Pose from Orthography and Scaling), аппроксимирующий перспективную проекцию с помощью масштабированной ортогональной проекции и находящий матрицу поворота и вектор сдвига объекта путём решения линейной системы
  2. POSIT (POS with ITerations), который использует в цикле аппроксимацию нахождения положения POS для нахождения более хорошей масштабированной ортогональной проекции особых точек, а затем применяет POS к этим точкам, а не к исходным. POSIT сходится к точному решению за несколько итераций.
  3. OpenCV — библиотека компьютерного зрения широкого назначения с открытым исходным кодом. Основные части библиотеки — интерпретация изображений и алгоритмы машинного обучения. Список возможностей, предоставляемых OpenCV, весьма обширен: интерпретация изображений, калибровка камеры по эталону, устранение оптических искажений, анализ перемещения объекта, определение формы объекта и слежение за объектом, сегментация объекта и др. Нам же интереcтно solvePnP

SLAM — Simultaneous Localization and Mapping

Метод одновременной локализации и построения карты (SLAM) — наиболее популярный способ позиционирования, который применяется для отслеживания положения в пространстве.
Рис. 3 Метод SLAM

Алгоритм состоит из двух частей: первая — составление карты неизвестного окружающего пространства на основе измерений (данные с одометра или стерео-камеры), вторая — определение своего местоположения (локализация) в пространстве на основе сравнения текущих измерений с имеющейся картой пространства. Данный цикл непрерывно пере вычисляется, при этом результаты одного процесса участвуют в вычислениях другого процесса. Наиболее популярные методы решения задачи включают в себя фильтр частиц и расширенный фильтр Калмана.SLAM удобен для мобильных решений виртуальной и дополненной реальности. Недостатком данного подхода является большая вычислительная сложность.

Инерциальный трекинг

Современные инерциальные измерительные системы (IMU) на основе MEMS-технологии позволяют отслеживать ориентацию (roll, pitch, yaw) в пространстве с большой точностью и минимальными задержками.
Рис. 4 MEMS

Благодаря алгоритмам «sensor fusion» на основе комплементарного фильтра или фильтра Калмана данные с гироскопа и акселерометра успешно корректируют друг друга и обеспечивают точность как для кратковременных измерений, так и для длительного периода. Однако определение координат (перемещения) за счёт двойного интегрирования линейного ускорения (dead reckoning), вычисленного из сырых данных с акселерометра, не удовлетворяет требованиям по точности на длительных периодах времени. Акселерометр сам по себе даёт сильно зашумленные данные, и при интегрировании ошибка увеличивается со временем квадратично. Решить данную проблему помогает комбинирование инерциального подхода к трекингу с другими методами, которые периодически корректируют, так называемый, дрифт акселерометра.

Гибридные методы

Так как ни один из методов не является безупречным, и все они имеют свои слабые места, наиболее разумно комбинировать различные методы отслеживания. Так инерциальный трекинг (IMU) может обеспечить высокую частоту обновления данных (до 1000 Гц), в то время как оптические методы могут дать стабильную точность в длительные периоды времени (корректирование дрифта).

Примеры задачи решаемые с помощью ML

Отслеживание направления взгляда пользователя в браузере

Решить подобную задачу не так уж и трудно благодаря JavaScript-библиотеке TensorFlow. В браузере очень легко получить доступ к веб-камере. Если предположить, что в качестве входных данных для нейронной сети будет использоваться всё изображение с камеры, то можно сказать, что оно для этих целей слишком велико. Системе придётся проделать большую работу только для того, чтобы определить то место на изображении, где находятся глаза. Такой подход может хорошо показать себя в том случае, если речь идёт о модели, которую разработчик обучает самостоятельно и развёртывает на сервере, однако если мы говорим об обучении и использовании модели в браузере — это уже чересчур.

Для того чтобы облегчить задачу сети, мы можем предоставить ей лишь часть изображения — ту, которая содержит глаза пользователя
Рис. 4 Процесс выделения глаз.
и небольшую область вокруг них. Эту область, представляющую собой прямоугольник, окружающий глаза, можно выявить с помощью сторонней библиотеки.

Для обнаружения лица на изображении воспользуемся библиотекой, которая называется clmtrackr.



Источники информации

Эта статья находится в разработке!