Редактирование: Параллельный алгоритм нахождения выпуклой оболочки
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 53: | Строка 53: | ||
Теперь нам нужно это как то ускорить. Давайте посмотрим, что же мы можем делать параллельно, и при этом не ухудшим асимптотику. Конечно же, у нас был поиск касательной за <tex>O(log^2(n))</tex>, а можно сделать его за <tex>work = O(n)</tex>, при этом уменьшив span | Теперь нам нужно это как то ускорить. Давайте посмотрим, что же мы можем делать параллельно, и при этом не ухудшим асимптотику. Конечно же, у нас был поиск касательной за <tex>O(log^2(n))</tex>, а можно сделать его за <tex>work = O(n)</tex>, при этом уменьшив span | ||
− | Посмотрим на каждую фазу бинпоиска. Заметим, что мы можем просто не брать бинпоиск, а разделить массив рассмотрения на <tex>\sqrt | + | Посмотрим на каждую фазу бинпоиска. Заметим, что мы можем просто не брать бинпоиск, а разделить массив рассмотрения на <tex>\sqrt(n)</tex> частей. |
− | Для каждого элемента посмотрим его результат (поймем, выше ли реальная касательная), и, если оказалось, что у нас и у точки, которая находится на <tex>\sqrt | + | Для каждого элемента посмотрим его результат (поймем, выше ли реальная касательная), и, если оказалось, что у нас и у точки, которая находится на <tex>\sqrt(n)</tex> различные результаты, то мы поймем, что правильный результат находится между нами. То есть мы возьмем все точки, которые находятся между нами, если у нас с соседом разные результаты и снова у каждой точки посмотрим, где находится верный результат. В этот раз мы уже точно узнаем результат, ведь теперь недостающих точек нет. То есть алгоритм будет такой: |
1) Берем <tex>\sqrt{n}</tex>, <tex>2\sqrt{n}</tex>, <tex>3\sqrt{n}</tex>, ..., <tex>\sqrt{n}\sqrt{n}</tex> и параллельно проверяем, подходят ли они под условие. Каждая из них возвращает <tex>0</tex> или <tex>1</tex> - левее или правее они результата. Каждый результат считает за себя <tex>k\sqrt{n}</tex> и за соседа <tex>(k + 1)\sqrt{n}</tex>. | 1) Берем <tex>\sqrt{n}</tex>, <tex>2\sqrt{n}</tex>, <tex>3\sqrt{n}</tex>, ..., <tex>\sqrt{n}\sqrt{n}</tex> и параллельно проверяем, подходят ли они под условие. Каждая из них возвращает <tex>0</tex> или <tex>1</tex> - левее или правее они результата. Каждый результат считает за себя <tex>k\sqrt{n}</tex> и за соседа <tex>(k + 1)\sqrt{n}</tex>. | ||
Строка 65: | Строка 65: | ||
1) Создаем функцию, которая находит касательную для точки из первого многоугольника на второй многоугольник. | 1) Создаем функцию, которая находит касательную для точки из первого многоугольника на второй многоугольник. | ||
− | fun | + | fun get(K): |
'''int''' startAfter | '''int''' startAfter | ||
'''pfor''' i = 0...sqrt(n): | '''pfor''' i = 0...sqrt(n): | ||
Строка 81: | Строка 81: | ||
if (left_turn(start, K, middle) != left_turn(middle, K, finish)) return middle | if (left_turn(start, K, middle) != left_turn(middle, K, finish)) return middle | ||
− | + | мы запускаем pfor по <tex>\sqrt{n}</tex> точек равных <tex>i \cdot \sqrt{n}</tex> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <tex> | ||
− | |||
− |